Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 9, pp 1225–1229 | Cite as

Double-String Model for Auditory Transduction of Drosophila

  • Woo Seok Lee
  • Kang-Hun AhnEmail author
  • Jeongmi Lee
  • Yun Doo Chung
  • Natasha Mhatre
  • Daniel Robert
Article
  • 27 Downloads

Abstract

The Drosophila auditory system consists of four large basal segments: the arista, the funiculus, the pedicel, and the scape. When an acoustic stimulus is applied to the arista and the funiculus their mechanical vibrations are transmitted to chordotonal neurons in Johnston’s organ where mechanoelectric transduction arises. We study the mechanotransduction mechanism in the Drosophila auditory system by using a laser Doppler vibrometer (LDV) and extracellular electrophysiology. We find that large and small peaks appear alternatively and that the antenna vibration is asymmetric depending on whether the pedicel and the scape are fixed. Interestingly, we find that this asymmetric vibration accompanies the alternating neural peak structure. Here, we propose a mathematical model to explain the alternating peak structure by using a model consisting of two opposing neurons that are modeled as strings. Generally, strings have tension only when they are elongated. This property allows the alternating neural peaks for asymmetric antenna motion.

Keywords

Drosophila Johnston’s organ Mechanotransduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. C. Bennet-Clack, Nature 234, 255 (1971).ADSCrossRefGoogle Scholar
  2. [2]
    G. Gibson, B. Warren and I. J. Russell, JARO 11, 527 (2010)CrossRefGoogle Scholar
  3. [3]
    R. Warren, G. Gibson and I. J. Russell, Curr. Biology 19, 485 (2009).CrossRefGoogle Scholar
  4. [4]
    J. Howard and A. J. Hudspeth, Neuron 1, 189 (1988).CrossRefGoogle Scholar
  5. [5]
    A. C. Crawford and R. Fettiplace, J. Physiology 364, 359, (1985).CrossRefGoogle Scholar
  6. [6]
    J. Howard and A. J. Hudspeth, Proc. National Acad. Sci. 84, 3064, (1987).ADSCrossRefGoogle Scholar
  7. [7]
    I. J. Russell, M. Kossl and G. P. Richardson, Proc. Royal Soc. London B: Biological Sci. 250, 217 (1992).ADSCrossRefGoogle Scholar
  8. [8]
    A. J. Hudspeth et al., Proc. National Acad. Sci. 97, 11765 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    J. Howard and A. J. Hudspeth, Neuron 1, 189 (1988).CrossRefGoogle Scholar
  10. [10]
    T. Effertz et al., Nature Neurosci. 15.9, 1198 (2012).CrossRefGoogle Scholar
  11. [11]
    J. T. Albert, B. Nadrowski and M. C. Göpfert, Curr. Biology 17, 1000 (2007).CrossRefGoogle Scholar
  12. [12]
    M. C. Göpfert et al., Proc. National Acad. Sci. USA 102, 325 (2005).ADSCrossRefGoogle Scholar
  13. [13]
    B. Nadrowski, J. T. Albert and M. C. Göpfert., Curr. Biology 18, 1365 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Woo Seok Lee
    • 1
  • Kang-Hun Ahn
    • 1
    Email author
  • Jeongmi Lee
    • 2
  • Yun Doo Chung
    • 2
  • Natasha Mhatre
    • 3
  • Daniel Robert
    • 3
  1. 1.Department of PhysicsChungnam National UniversityDaejeonKorea
  2. 2.Department of Life SciencesUniversity of SeoulSeoulKorea
  3. 3.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations