Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 1–15 | Cite as

Electronics and Optoelectronics Based on Two-Dimensional Materials

  • Quoc An Vu
  • Woo Jong Yu
Review Articles
  • 282 Downloads

Abstract

Recently, with the emergence of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides, and hexagonal boron nitride, various studies on electronic and optoelectronic devices based on them have been carried out. In this review article, we discuss the representative studies on electronic and optoelectronic devices based on 2D materials and their heterostructures. Accordingly, we briefly overview the unique properties of typical 2D materials and their van der Waals heterostructures and thereafter present an in-depth review of their advantages for electronics and optoelectronics. The opportunities and challenges presented by them for future electronics and optoelectronics are discussed.

Keywords

2D materials Van der Waals heterostructure Electronic Optoelectronic devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam, ACS Nano 8, 1102 (2014).CrossRefGoogle Scholar
  2. [2]
    M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant and A. Castellanos-Gomez, Chem. Soc. Rev. 44, 3691 (2015).CrossRefGoogle Scholar
  3. [3]
    A. K. Geim and I. V Grigorieva, Nature 499, 419 (2013).CrossRefGoogle Scholar
  4. [4]
    F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, Nat. Nanotechnol. 9, 780 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, Nat. Nanotechnol. 9, 768 (2014).ADSCrossRefGoogle Scholar
  6. [6]
    K. S. Novoselov, A. Mishchenko, A. Carvalho and A. H. C. Neto, Science 353, aac9439 (2016).CrossRefGoogle Scholar
  7. [7]
    D. Jariwala, T. J. Marks and M. C. Hersam, Nat. Mater. 16, 170 (2017).ADSCrossRefGoogle Scholar
  8. [8]
    M. Chhowalla, D. Jena and H. Zhang, Nat. Rev. Mater. 1, 1 (2016).CrossRefGoogle Scholar
  9. [9]
    S. Z. Butler et al., ACS Nano 7, 2898 (2011).CrossRefGoogle Scholar
  10. [10]
    D. L. Duong, S. J. Yun and Y. H. Lee, ACS Nano 11, 11803 (2017).CrossRefGoogle Scholar
  11. [11]
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  12. [12]
    K. S. Novoselov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  13. [13]
    Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).ADSCrossRefGoogle Scholar
  14. [14]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005).ADSCrossRefGoogle Scholar
  15. [15]
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and A. K. Geim, Phys. Rev. Lett. 100, 11 (2008).Google Scholar
  16. [16]
    J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler and Y. Chen, Appl. Phys. Lett. 93, 13905 (2008).CrossRefGoogle Scholar
  17. [17]
    R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science 320, 1308 (2008).ADSCrossRefGoogle Scholar
  18. [18]
    C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).ADSCrossRefGoogle Scholar
  19. [19]
    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu and D. Feng, Nat. Nanotechnol. 9, 1 (2014).CrossRefGoogle Scholar
  20. [20]
    F. Xia, H. Wang and Y. Jia, Nat. Commun. 5, 1 (2014).ADSGoogle Scholar
  21. [21]
    L. Li, F. Yang et al., Nat. Nanotechnol. 11, 593 (2016).ADSCrossRefGoogle Scholar
  22. [22]
    G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim and J. Hone, Appl. Phys. Lett. 99, 1 (2011).Google Scholar
  23. [23]
    S. M. Kim et al., Nat. Commun. 6, 8662 (2015).CrossRefGoogle Scholar
  24. [24]
    L. Wang et al., Science 342, 614 (2013).ADSCrossRefGoogle Scholar
  25. [25]
    F. Withers et al., Nat. Mater. 14, 301 (2015).ADSCrossRefGoogle Scholar
  26. [26]
    X. Cui et al., Nat. Nanotechnol. 10, 534 (2015).ADSCrossRefGoogle Scholar
  27. [27]
    L. Britnell et al., Science 335, 947 (2012).ADSCrossRefGoogle Scholar
  28. [28]
    J. Wu et al., Nat. Nanotechnol. 12, 530 (2017).ADSCrossRefGoogle Scholar
  29. [29]
    B. Huang et al., Nature 546, 270 (2017).ADSCrossRefGoogle Scholar
  30. [30]
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V Khotkevich, S. V Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).ADSCrossRefGoogle Scholar
  31. [31]
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 6, 147 (2011).ADSCrossRefGoogle Scholar
  32. [32]
    J. N. Coleman et al., Science 331, 568 (2011).ADSCrossRefGoogle Scholar
  33. [33]
    J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang and Y. Xie, Adv. Mater. 24, 1969 (2012).CrossRefGoogle Scholar
  34. [34]
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature 457, 706 (2009).ADSCrossRefGoogle Scholar
  35. [35]
    X. Li et al., Science 324, 1312 (2009).ADSCrossRefGoogle Scholar
  36. [36]
    G. H. Han et al., Nat. Commun. 6, 6128 (2015).CrossRefGoogle Scholar
  37. [37]
    J-H. Lee et al., Science 344, 286 (2014).ADSCrossRefGoogle Scholar
  38. [38]
    S. J. Yun et al., ACS Nano 9, 5510 (2015).CrossRefGoogle Scholar
  39. [39]
    K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C-J. Kim, D. Muller and J. Park, Nature 520, 656 (2015).ADSCrossRefGoogle Scholar
  40. [40]
    V. L. Nguyen et al., Adv. Mater. 27, 1376 (2015).CrossRefGoogle Scholar
  41. [41]
    Y. Zhang, L. Zhang and C. Zhou, Acc. Chem. Res. 46, 2329 (2013).CrossRefGoogle Scholar
  42. [42]
    T. Jurca, M. J. Moody, A. Henning, J. D. Emery, B. Wang, J. M. Tan, T. L. Lohr, L. J. Lauhon and T. J. Marks, Angew. Chemie-Int. Ed. 56, 4991 (2017).CrossRefGoogle Scholar
  43. [43]
    J. J. Pyeon, S. H. Kim, D. S. Jeong, S-H. Baek, C-Y. Kang, J-S. Kim and S. K. Kim, Nanoscale. 8, 10792 (2016).ADSCrossRefGoogle Scholar
  44. [44]
    D. L. Duong et al., Nature 490, 235 (2012).ADSCrossRefGoogle Scholar
  45. [45]
    L. Karvonen et al., Nat. Commun. 8, 15714 (2017).ADSCrossRefGoogle Scholar
  46. [46]
    J. Kotakoski, C. Mangler and J. C. Meyer, Nat. Commun. 5, 1 (2014).CrossRefGoogle Scholar
  47. [47]
    J. Hong, C. Jin, J. Yuan and Z. Zhang, Adv. Mater. 24, 1606434 (2017).CrossRefGoogle Scholar
  48. [48]
    T. Ma, Z. Liu, J. Wen, Y. Gao, X. Ren, H. Chen, C. Jin, X. L. Ma, N. Xu, H. M. Cheng and W. Ren, Nat. Commun. 8, 1 (2017).ADSCrossRefGoogle Scholar
  49. [49]
    F. Banhart, J. Kotakoski and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).CrossRefGoogle Scholar
  50. [50]
    T. H. Ly, M. H. Chiu, M. Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L. J. Li and Y. H. Lee, 8, 11401 (2014).Google Scholar
  51. [51]
    H. Y. Jeong et al., ACS Nano 10, 770 (2016).CrossRefGoogle Scholar
  52. [52]
    A. W. Tsen et al., Science 336, 1143 (2012).ADSCrossRefGoogle Scholar
  53. [53]
    S. H. Song, M. K. Joo, M. Neumann, H. Kim and Y. H. Lee, Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
  54. [54]
    T. H. Ly, D. J. Perello, J. Zhao, Q. Deng, H. Kim, G. H. Han, S. H. Chae, H. Y. Jeong and Y. H. Lee, Nat. Commun. 7, 10426 (2016).ADSCrossRefGoogle Scholar
  55. [55]
    M-Y. Li et al., Science 349, 524 (2015).ADSCrossRefGoogle Scholar
  56. [56]
    X. Duan et al., Nat. Nanotechnol. 9, 1024 (2014).ADSCrossRefGoogle Scholar
  57. [57]
    P. K. Sahoo, S. Memaran, Y. Xin, L. Balicas and H. R. Gutiérrez, Nature 553, 63 (2018).ADSCrossRefGoogle Scholar
  58. [58]
    M. Mahjouri-Samani et al., Nat. Commun. 6, 1 (2015).CrossRefGoogle Scholar
  59. [59]
    C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden and X. Xu, Nat. Mater. 13, 1096 (2014).CrossRefGoogle Scholar
  60. [60]
    Y. Gong et al., Nat. Mater. 13, 1135 (2014).ADSCrossRefGoogle Scholar
  61. [61]
    S. Wang, X. Wang and J. H. Warner, ACS Nano 9, 5246 (2015).CrossRefGoogle Scholar
  62. [62]
    K. Kang, K. H. Lee, Y. Han, H. Gao, S. Xie, D. A. Muller and J. Park, Nature 550, 229 (2017).ADSCrossRefGoogle Scholar
  63. [63]
    M. M. Waldrop, Nat. News. 530, 144 (2016).CrossRefGoogle Scholar
  64. [64]
    K. Bjorkqvist and T. Arnborg, Phys. Scr. 24, 418 (1981).ADSCrossRefGoogle Scholar
  65. [65]
    G. E. Moore, in IEDM Tech. Dig. (1975), p. 11.Google Scholar
  66. [66]
    M. Lundstrom, Science 299, 210 (2003).CrossRefGoogle Scholar
  67. [67]
    S. B. Desai et al., Science 354, 99 (2016).ADSCrossRefGoogle Scholar
  68. [68]
    V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis and E. Bucher, Appl. Phys. Lett. 84, 3301 (2004).ADSCrossRefGoogle Scholar
  69. [69]
    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 2 (2010).CrossRefGoogle Scholar
  70. [70]
    S. Cho et al., Science 349, 625 (2015).ADSCrossRefGoogle Scholar
  71. [71]
    D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang and Y. H. Lee, Nat. Phys. 11, 482 (2015).CrossRefGoogle Scholar
  72. [72]
    D. J. Perello, S. H. Chae, S. Song and Y. H. Lee, Nat. Commun. 6, 1 (2015).CrossRefGoogle Scholar
  73. [73]
    A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M. S. Kang, C. Lee and J. H. Cho, Nano Lett. 17, 2999 (2017).ADSCrossRefGoogle Scholar
  74. [74]
    E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang, L. Tang, S. Liu, P. Zhou, W. Hu and F. Xiu, Adv. Funct. Mater. 25, 4076 (2015).CrossRefGoogle Scholar
  75. [75]
    Y. C. Lin et al., ACS Nano 9, 11249 (2015).CrossRefGoogle Scholar
  76. [76]
    W. Cao, W. Liu, J. Kang and K. Banerjee, IEEE Electron Device Lett. 37, 1497 (2016).ADSCrossRefGoogle Scholar
  77. [77]
    Y. Liu, J. Guo, Y. Wu, E. Zhu, N. O. Weiss, Q. He, H. Wu, H. C. Cheng, Y. Xu, I. Shakir, Y. Huang and X. Duan, Nano Lett. 16, 6337 (2016).ADSCrossRefGoogle Scholar
  78. [78]
    A. Nourbakhsh et al., Nano Lett. 16, 7798 (2016).ADSCrossRefGoogle Scholar
  79. [79]
    K. Xu et al., Nano Lett. 17, 1065 (2017).ADSCrossRefGoogle Scholar
  80. [80]
    L. Xie et al., Adv. Mater. 29, 1 (2017).Google Scholar
  81. [81]
    F. Zhang and J. Appenzeller, Nano Lett. 15, 301 (2015).ADSCrossRefGoogle Scholar
  82. [82]
    A-J. Cho, S. Yang, K. Park, S. D. Namgung, H. Kim and J-Y. Kwon, ECS Solid State Lett. 3, Q67 (2014).ADSCrossRefGoogle Scholar
  83. [83]
    D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid and C. N. R. Rao, ACS Nano 6, 5635 (2012).CrossRefGoogle Scholar
  84. [84]
    J. Shu, G. Wu, Y. Guo, B. Liu, X. Wei and Q. Chen, Nanoscale. 8, 3049 (2016).ADSCrossRefGoogle Scholar
  85. [85]
    X. Zou, J. Wang, C-H. Chiu, Y. Wu, X. Xiao, C. Jiang, W-W.Wu, L.Mai, T. Chen, J. Li, J. C. Ho and L. Liao, Adv. Mater. 26, 6255 (2014).CrossRefGoogle Scholar
  86. [86]
    N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto and M. F. Crommie, Science 329, 544 (2010).ADSCrossRefGoogle Scholar
  87. [87]
    S. J. Haigh et al., Nat. Mater. 11, 764 (2012).ADSCrossRefGoogle Scholar
  88. [88]
    F. Pizzocchero, L. Gammelgaard, B. S. Jessen, J. M. Caridad, L.Wang, J. Hone, P. Bggild and T. J. Booth, Nat. Commun. 7, 11894 (2016).ADSCrossRefGoogle Scholar
  89. [89]
    A. V. Kretinin et al., Nano Lett. 14, 3270 (2014).ADSCrossRefGoogle Scholar
  90. [90]
    E. Khestanova, F. Guinea, L. Fumagalli, A. K. Geim and I. V. Grigorieva, Nat. Commun. 7, 12587 (2016).ADSCrossRefGoogle Scholar
  91. [91]
    Q. A. Vu, S. Fan, S. H. Lee, M-K. Joo, W. J. Yu and Y. H. Lee, 2D Mater. 5, 031001 (2018).CrossRefGoogle Scholar
  92. [92]
    H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K-E. Byun, P. Kim, I. Yoo, H-J. Chung and K. Kim, Science 336, 1140 (2012).ADSCrossRefGoogle Scholar
  93. [93]
    T. Georgiou et al., Nat. Nanotechnol. 8, 100 (2013).ADSCrossRefGoogle Scholar
  94. [94]
    W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang and X. Duan, Nat. Mater. 12, 246 (2013).ADSCrossRefGoogle Scholar
  95. [95]
    Y. S. Shin, K. Lee, Y. R. Kim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo, S. Park, Y. H. Lee and W. J. Yu, Adv. Mater. 1704435, 1 (2018).Google Scholar
  96. [96]
    A. M. Ionescu and H. Riel, Nature 479, 329 (2011).ADSCrossRefGoogle Scholar
  97. [97]
    O. M. Nayfeh, J. L. Hoyt and D. A. Antoniadis, IEEE Trans. Electron Devices. 56, 2264 (2009).ADSCrossRefGoogle Scholar
  98. [98]
    Y. Yang et al., in Tech. Dig.-Int. Electron Devices Meet. IEDM (2012), p. 379.Google Scholar
  99. [99]
    D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. De Gendt, M. M. Heyns and G. Groeseneken, Jpn. J. Appl. Phys. 49, 04DC10 (2010).CrossRefGoogle Scholar
  100. [100]
    H. Kam, D. T. Lee, R. T. Howe and T-J. King, in IEEE Int. Devices Meet. 2005. IEDM Tech. Dig. (2005), p. 463.Google Scholar
  101. [101]
    A. Rusu, G. A. Salvatore, D. Jiménez and A. M. Ionescu, in Tech. Dig.-Int. Electron Devices Meet. IEDM (2010), p. 395.Google Scholar
  102. [102]
    J. Jo, W. Y. Choi, J. D. Park, J. W. Shim, H. Y. Yu and C. Shin, Nano Lett. 15, 4553 (2015).ADSCrossRefGoogle Scholar
  103. [103]
    S. Salahuddin and S. Datta, Nano Lett. 8, 405 (2008).ADSCrossRefGoogle Scholar
  104. [104]
    J. Appenzeller, Y. M. Lin, J. Knoch and P. Avouris, Phys. Rev. Lett. 93, 1 (2004).CrossRefGoogle Scholar
  105. [105]
    M. O. Li, D. Esseni, J. J. Nahas, D. Jena and H. G. Xing, IEEE J. Electron Devices Soc. 3, 200 (2015).CrossRefGoogle Scholar
  106. [106]
    J. Xu, J. Jia, S. Lai, J. Ju and S. Lee, Appl. Phys. Lett. 110, 033103 (2017).ADSCrossRefGoogle Scholar
  107. [107]
    X. Yan, C. Liu, C. Li, W. Bao, S. Ding, D. W. Zhang and P. Zhou, Small. 13, 1 (2017).Google Scholar
  108. [108]
    T. Roy, M. Tosun, M. Hettick, G. H. Ahn, C. Hu and A. Javey, Appl. Phys. Lett. 108, 083111 (2016).ADSCrossRefGoogle Scholar
  109. [109]
    D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan and K. Banerjee, Nature 526, 91 (2015).ADSCrossRefGoogle Scholar
  110. [110]
    M. Si, C-J. Su, C. Jiang, N. J. Conrad, H. Zhou, K. D. Maize, G. Qiu, C-T. Wu, A. Shakouri, M. A. Alam and P. D. Ye, Nat. Nanotechnol. 13, 24 (2017).ADSCrossRefGoogle Scholar
  111. [111]
    F. A. McGuire, Y. C. Lin, K. Price, G. B. Rayner, S. Khandelwal, S. Salahuddin and A. D. Franklin, Nano Lett. 17, 4801 (2017).ADSCrossRefGoogle Scholar
  112. [112]
    D. Kahng and S. M. Sze, The Bell System Technical Journal 1, 1288 (1967).CrossRefGoogle Scholar
  113. [113]
    A. Misra, H. Kalita, M. Waikar, A. Gour, M. Bhaisare, M. Khare, M. Aslam and A. Kottantharayil, 2012 4th IEEE Int. Mem. Work. IMW 2012 (2012), p. 6.Google Scholar
  114. [114]
    A. J. Hong et al., ACS Nano 5, 7812 (2011).CrossRefGoogle Scholar
  115. [115]
    R. Yang, C. Zhu, J. Meng, Z. Huo, M. Cheng, D. Liu, W. Yang, D. Shi, M. Liu and G. Zhang, Sci. Rep. 3, 1 (2013).Google Scholar
  116. [116]
    S. S. Joo, J. Kim, S. S. Kang, S. Kim, S-H. Choi and S. W. Hwang, Nanotechnology. 25, 255203 (2014).CrossRefGoogle Scholar
  117. [117]
    Y. R. Kim, Y. E. Jo, Y. S. Shin, W. T. Kang, Y. H. Sung, U. Y. Won, Y. H. Lee and W. J. Yu, Appl. Phys. Lett. 106, 1 (2015).Google Scholar
  118. [118]
    S. Bertolazzi, D. Krasnozhon and A. Kis, ACS Nano 7, 3246 (2013).CrossRefGoogle Scholar
  119. [119]
    M. S. Choi, G-H. Lee, Y-J. Yu, D-Y. Lee, S. H. Lee, P. Kim, J. Hone and W. J. Yoo, Nat. Commun. 4, 1624 (2013).CrossRefGoogle Scholar
  120. [120]
    C. Ko, Y. Lee, Y. Chen, J. Suh, D. Fu, A. Suslu, S. Lee, J. D. Clarkson, H. S. Choe, S. Tongay, R. Ramesh and J. Wu, Adv. Mater. 28, 2923 (2016).CrossRefGoogle Scholar
  121. [121]
    E. Zhang, W. Wang, C. Zhang, Y. Jin, G. Zhu, Q. Sun, D. W. Zhang, P. Zhou and F. Xiu, ACS Nano 9, 612 (2015).CrossRefGoogle Scholar
  122. [122]
    D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu and Z. Zhang, Adv. Funct. Mater. 25, 7360 (2015).CrossRefGoogle Scholar
  123. [123]
    J. Wang, X. Zou, X. Xiao, L. Xu, C. Wang, C. Jiang, J. C. Ho, T. Wang, J. Li and L. Liao, Small. 11, 208 (2015).CrossRefGoogle Scholar
  124. [124]
    D. Li, M. Chen, Z. Sun, P. Yu, Z. Liu, P. M. Ajayan and Z. Zhang, Nat. Nanotechnol. 12, 901 (2017).ADSCrossRefGoogle Scholar
  125. [125]
    Q. A. Vu et al., Nat. Commun. 7, 12725 (2016).ADSCrossRefGoogle Scholar
  126. [126]
    A. Star, Y. Lu, K. Bradley and G. Grüner, Nano Lett. 4, 1587 (2004).ADSCrossRefGoogle Scholar
  127. [127]
    J. Borghetti, V. Derycke, S. Lenfant, P. Chenevier, A. Filoramo, M. Goffman, D. Vuillaume and J. P. Bourgoin, Adv. Mater. 18, 2535 (2006).CrossRefGoogle Scholar
  128. [128]
    S. Lei et al., Nano Lett. 15, 259 (2015).ADSCrossRefGoogle Scholar
  129. [129]
    K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan and A. Ghosh, Nat. Nanotechnol. 8, 826 (2013).ADSCrossRefGoogle Scholar
  130. [130]
    J. Lee, S. Pak, Y-W. Lee, Y. Cho, J. Hong, P. Giraud, H. S. Shin, S. M. Morris, J. I. Sohn, S. Cha and J. M. Kim, Nat. Commun. 8, 14734 (2017).ADSCrossRefGoogle Scholar
  131. [131]
    V. K. Sangwan, D. Jariwala, I. S. Kim, K-S. Chen, T. J. Marks, L. J. Lauhon and M. C. Hersam, Nat. Nanotechnol. 10, 403 (2015).ADSCrossRefGoogle Scholar
  132. [132]
    T. E. Hartman, J. C. Blair and R. Bauer, J. Appl. Phys. 37, 2468 (1966).ADSCrossRefGoogle Scholar
  133. [133]
    H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson, Proc. IEEE. 98, 2201 (2010).CrossRefGoogle Scholar
  134. [134]
    C. C. Yeh, T. P. Ma, N. Ramaswamy, N. Rocklein, D. Gealy, T. Graettinger and K. Min, Appl. Phys. Lett. 91, 113521 (2007).ADSCrossRefGoogle Scholar
  135. [135]
    D. Ielmini, Phys. Rev. B. 78, 035308 (2008).ADSCrossRefGoogle Scholar
  136. [136]
    M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan, B.Wang, S-J. Liang, J. J. Yang, P. Wang and F. Miao, Nat. Electron. 1, 130 (2018).CrossRefGoogle Scholar
  137. [137]
    M. Ghoneim and M. Hussain, Electronics. 4, 424 (2015).CrossRefGoogle Scholar
  138. [138]
    K. Choi, Y. T. Lee and S. Im, Nano Today. 11, 626 (2016).CrossRefGoogle Scholar
  139. [139]
    Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, ACS Nano 6, 74 (2012).CrossRefGoogle Scholar
  140. [140]
    H. Zhang, A. V. Babichev, G. Jacopin, P. Lavenus, F. H. Julien, A. Yu. Egorov, J. Zhang, T. Pauporté and M. Tchernycheva, J. Appl. Phys. 114, 234505 (2013).ADSCrossRefGoogle Scholar
  141. [141]
    A. Zhang, H. Kim, J. Cheng and Y-H. Lo, Nano Lett. 10, 2117 (2010).ADSCrossRefGoogle Scholar
  142. [142]
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nat. Nanotechnol. 8, 497 (2013).ADSCrossRefGoogle Scholar
  143. [143]
    B. W. H. Baugher, H. O. H. Churchill, Y. Yang and P. Jarillo-Herrero, Nat. Nanotechnol. 9, 262 (2014).ADSCrossRefGoogle Scholar
  144. [144]
    A. Pospischil, M. M. Furchi and T. Mueller, Nat. Nanotechnol. 9, 257 (2014).ADSCrossRefGoogle Scholar
  145. [145]
    J. S. Ross et al., Nat. Nanotechnol. 9, 268 (2014).ADSCrossRefGoogle Scholar
  146. [146]
    M. S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi and W. J. Yoo, ACS Nano 8, 9332 (2014).CrossRefGoogle Scholar
  147. [147]
    Z. Wang, F. Wang, L. Yin, Y. Huang, K. Xu, F. Wang, X. Zhan and J. He, Nanoscale. 8, 13245 (2016).ADSCrossRefGoogle Scholar
  148. [148]
    Y-Q. Bie et al., Nat. Nanotechnol. 12, 1124 (2017).ADSCrossRefGoogle Scholar
  149. [149]
    H. Yuan et al., Nat. Nanotechnol. 10, 707 (2015).ADSCrossRefGoogle Scholar
  150. [150]
    M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. Van Der Zant and A. Castellanos-Gomez, Nat. Commun. 5, 1 (2014).CrossRefGoogle Scholar
  151. [151]
    Y. Liu, Y. Cai, G. Zhang, Y. W. Zhang and K. W. Ang, Adv. Funct. Mater. 27, 1 (2017).ADSGoogle Scholar
  152. [152]
    D. Kufer and G. Konstantatos, Adv. Mater. 27, 176 (2015).CrossRefGoogle Scholar
  153. [153]
    C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. P. Lau and Q. Bao, Sci. Rep. 5, 1 (2015).Google Scholar
  154. [154]
    D. De Fazio et al., ACS Nano 10, 8252 (2016).CrossRefGoogle Scholar
  155. [155]
    W. Zhang et al., Sci. Rep. 4, 3826 (2014).CrossRefGoogle Scholar
  156. [156]
    L. Britnell et al., Science 340, 1311 (2013).ADSCrossRefGoogle Scholar
  157. [157]
    W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang and X. Duan, Nat. Nanotechnol. 8, 952 (2013).ADSCrossRefGoogle Scholar
  158. [158]
    M. Massicotte et al., Nat. Nanotechnol. 11, 1 (2015).CrossRefGoogle Scholar
  159. [159]
    W. J. Yu et al., Nat. Commun. 7, 13278 (2016).ADSCrossRefGoogle Scholar
  160. [160]
    C-H. Lee et al., Nat. Nanotechnol. 9, 1 (2014).CrossRefGoogle Scholar
  161. [161]
    D. H. Luong, H. S. Lee, G. P. Neupane, S. Roy, G. Ghimire, J. H. Lee, Q. A. Vu and Y. H. Lee, Adv. Mater. 29, 1 (2017).ADSCrossRefGoogle Scholar
  162. [162]
    Q. A. Vu, J. H. Lee, V. L. Nguyen, Y. S. Shin, S. C. Lim, K. Lee, J. Heo, S. Park, K. Kim, Y. H. Lee and W. J. Yu, Nano Lett. 17, 453 (2017).ADSCrossRefGoogle Scholar
  163. [163]
    Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye and X. Duan, ACS Nano 10, 4895 (2016).CrossRefGoogle Scholar
  164. [164]
    D. S. Schulman, A. J. Arnold and S. Das, Chem. Soc. Rev. 47, 3037 (2018).CrossRefGoogle Scholar
  165. [165]
    A. Allain, J. Kang, K. Banerjee and A. Kis, Nat. Mater. 14, 1195 (2015).ADSCrossRefGoogle Scholar
  166. [166]
    M. Farmanbar and G. Brocks, Phys. Rev. B-Condens. Matter Mater. Phys. 91, 1 (2015).CrossRefGoogle Scholar
  167. [167]
    X. Cui et al., Nano Lett. 17, 4781 (2017).ADSCrossRefGoogle Scholar
  168. [168]
    J. Wang, Q. Yao, C. W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, C. Jiang and W. W. Wu, Adv. Mater. 28, 8302 (2016).CrossRefGoogle Scholar
  169. [169]
    Y. Liu, N. O. Weiss, X. Duan, H-C. Cheng, Y. Huang and X. Duan, Nat. Rev. Mater. 1, 16042 (2016).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)SuwonKorea
  2. 2.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  3. 3.Department of Electronic and Electrical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations