Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 818–825 | Cite as

Measurement of Characteristic of X-band RF Cavity for 6 MeV Electron Linac

  • Seung-wook Shin
  • Seung-Hyun Lee
  • Seyoung Oh
  • Donghyup Ha
  • Mitra Ghergherehchi
  • Jongseo Chai
  • Byung-no Lee
  • Moonsik Chae
Article
  • 6 Downloads

Abstract

A compact 6 MeV electron linear accelerator (linac), intended to be used as an X-ray source for a dual-head gantry radiotherapy system has been developed. In order to meet the size requirements of the dual-head gantry machine, an X-band radio frequency (RF) technology is used, which facilitates a reduction in the size of the linac, which is nine times smaller than the conventional medical purpose linac using S-band RF technology. Nevertheless, the X-band RF technology requires much higher machining precision and higher-quality surface finish owing to the electrical breakdown phenomena resulting from its small size. After the design was completed, the RF cavity was machined using high-precision machining technology, achieving machining tolerances of ±2 μm, and a surface roughness less than 50 nm. Various RF properties were measured in the fabricated RF cavity by using a network analyzer, and the distribution of the electric field generated in the RF cavity was verified by a bead-pull measurement technique. RF conditioning and beam commissioning experiments were performed, following the fabrication and tuning of the RF cavity.

Keywords

X-band Electron linac RF cavity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. R. Mackie, Phys. Med. Biol. 51, R427 (2006), doi:10.1088/0031-9155/51/13/R24.ADSCrossRefGoogle Scholar
  2. [2]
    Y. B. Kim and C. O. Suh, Evolution of Radiotherapy: High precision Radiotherapy (2008), p. 604.Google Scholar
  3. [3]
    S. H. Lee et al., Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 852, 40 (2017), doi:10.1016/j.nima.2016.11.034.ADSCrossRefGoogle Scholar
  4. [4]
    Accuray Inc., (n.d.), www.accuray.com.Google Scholar
  5. [5]
    Y. Kamino, S. Miura, M. Kokubo, I. Yamashita, E. Hirai, M. Hiraoka and J. Ishikawa, Med. Phys. 34, 1797 (2007), doi:10.1118/1.2723878.CrossRefGoogle Scholar
  6. [6]
    J. R. J. Adler, S. D. Chang, M. J. Murphy, J. Doty, P. Geis and S. L. Hancock, Stereotact. Funct. Neurosurg. 69, 124 (1997).CrossRefGoogle Scholar
  7. [7]
    S. Hanna, Applications of X-band technology in medical accelerators, Proc. 1999 Part. Accel. Conf. (1999), p. 2516, doi:10.1109/PAC.1999.792751.Google Scholar
  8. [8]
    J. W. Wang, RF Properties Structures of Periodic for Linear Accelerating Colliders (1989).CrossRefGoogle Scholar
  9. [9]
    V. Dolgashev, High gradient, X-band and above, metallic RF structures (2015).Google Scholar
  10. [10]
    A. Tropp, Studies of vacuum discharges in the CLIC accelerating structure (Lund University, 2016).Google Scholar
  11. [11]
    S-W. Shin et al., J. Korean Phys. Soc. 71, 1048 (2017), doi:10.3938/jkps.71.1048.ADSCrossRefGoogle Scholar
  12. [12]
    J. C. Slater, Phys. Today. 3, 3 (1950), doi:10.1063/ 1.3066836.Google Scholar
  13. [13]
    H. Klein, Cern 92-03 1, 112 (1992).Google Scholar
  14. [14]
    P. Schmuser, Tuning of Multi-Cell Cavities using Bead Pull Measurements (1992).Google Scholar
  15. [15]
    Z. Ma, RF properties of high-temperature superconducting materials (Stanford University, 1995), https://search.proquest.com/docview/304219227?accountid=11840.Google Scholar
  16. [16]
    S. Ghosh, A. Mandal, S. Seth and S. S. Som, Conf. Proc. C110904, 280 (2011).Google Scholar
  17. [17]
    P. J. Petersan and S. M. Anlage, J. Appl. Phys. 84, 3392 (1998), doi:10.1063/1.368498.ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Seung-wook Shin
    • 1
  • Seung-Hyun Lee
    • 1
  • Seyoung Oh
    • 1
  • Donghyup Ha
    • 2
  • Mitra Ghergherehchi
    • 2
  • Jongseo Chai
    • 2
  • Byung-no Lee
    • 3
  • Moonsik Chae
    • 3
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.College of Information & Communication EngineeringSungkyunkwan UniversitySuwonKorea
  3. 3.Radiation Equipment Research Division, Korea Atomic Energy Research InstituteAdvance Radiation Technology InstituteJeongeupKorea

Personalised recommendations