Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 743–747 | Cite as

Magnetic Field Effects on Quantum Correlations for the XXX Heisenberg Spin Chain

Article
  • 18 Downloads

Abstract

We study the geometric quantum discord (GQD) for three spin 1/2 particles in the XXX Heisenberg model with an external magnetic field. We investigate the effect of temperature and J (the strength of interaction) on the GQD. Then, we apply a uniform magnetic field to our system and study the behavior of the GQD under the field. Furthermore, we compare the behavior of the GQD to the entanglement for our system under the above parameters.

Keywords

Geometric quantum discord XXX Heisenberg model Magnetic field Concurrence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A. Nielson and I. L. Chaung, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000).Google Scholar
  2. [2]
    C. H. Bennet and D. P. Divincenzo, Nature 404, 247 (2000).ADSCrossRefGoogle Scholar
  3. [3]
    P. Giorda and M. G. A. Paris, Phys. Rev. Lett. 104, 100501 (2010).CrossRefGoogle Scholar
  4. [4]
    A. Streltsov, G. Adesso, M. Piani and D. Bruβ Phys. Rev. Lett. 109, 050503 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    S. Lua, Phys. Rev. A 77, 022301 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    S. Lua and S. Fu, Phys. Rev. A 82, 034302 (2010).ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    X. Hu, H. Fan, D. L. Zhau and W. M. Liu, Phys. Rev. A 85, 032102 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    X. Hu, H. Fan, D. L. Zhau and W. M. Liu, Phys. Rev. A 87, 032340 (2013).ADSCrossRefGoogle Scholar
  9. [9]
    H. Olliver and W. H. Zurrek, Phys. Rev. Lett. 88, 017901 (2001).ADSCrossRefGoogle Scholar
  10. [10]
    L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    B. Dakic, V. Vedral and C. Brukner, Phys. Rev. Lett. 105, 190502 (2010).ADSCrossRefGoogle Scholar
  12. [12]
    D. C. Mattis, The theory of magnetism (Harper Row, New York, 1965).Google Scholar
  13. [13]
    D. Loss and D. P. Divincenzo, Phys. Rev. A 57, 120 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    T. Werlang and G. Rigolin, Phys. Rev. A 81, 044101 (2010).ADSCrossRefGoogle Scholar
  15. [15]
    J. Maziero, H. C. Guzman, L. C. Celeri, M. S. Sarandy and R. M. Serra, Phys. Rev. A 82, 012106 (2010).ADSCrossRefGoogle Scholar
  16. [16]
    B. Q. Liu, B. Shao, J. G. Li, J. Zou and L. A. Wu, Phys. Rev. A 83, 052112 (2011).ADSCrossRefGoogle Scholar
  17. [17]
    Y. C. Li and H. Q. Lin, Phys. Rev. A 83, 052323 (2011).ADSCrossRefGoogle Scholar
  18. [18]
    L. Ciliberti, R. Rossignoli and N. Canosa, Phys. Rev. A 82, 042316 (2010).ADSCrossRefGoogle Scholar
  19. [19]
    G. F. Zhang, H. Fan, A. L. Ji, Z. T. Jiang, A. Abliz and W. M. Liu, Ann. Phys. (NY) 326, 2694 (2011).ADSCrossRefGoogle Scholar
  20. [20]
    K. Modi, A. Brodutch, H. Cable, T. Z. Paterek and V. Vedral, Phil. Trans. Roy. Soc. A 370, 4810 (2012).ADSCrossRefGoogle Scholar
  21. [21]
    S. Hill and W. K. Woottters, Phys. Rev. Lett. 78, 5022 (1997).ADSCrossRefGoogle Scholar
  22. [22]
    W. K. Woottters, Phys. Rev. Lett. 80, 2245(1998).ADSCrossRefGoogle Scholar
  23. [23]
    R. Hildebrand, J. Math. Phys. 48, 102108(2007).ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Physics, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Quchan University of Advanced TechnologyQuchanIran

Personalised recommendations