Journal of the Korean Physical Society

, Volume 72, Issue 4, pp 515–521 | Cite as

Critical Current Density in the Heterogeneous High-T c Superconductor Ca1−xLa x Fe2As2

  • Soon-Gil Jung
  • Harim Jang
  • Soohyeon Shin
  • Tuson Park
  • Won Nam Kang


We investigate the critical current density of La-doped CaFe2As2 (LaCa122) single crystals via transport and magnetization measurements. A large piece of the LaCa122 shows a sharp superconducting (SC) phase transition at a temperature of T c ~ 45 K with a transition width of ΔT c = 3.3 K. Small pieces exfoliated from the large crystal, however, show multiple SC phase transitions: two disparate SC phases sequentially occurred at ~ 15 (low T c ) and ~ 45 K (high Tc). The temperature dependence of transport critical current density also shows two disparate curves, and a kink appears at ~ 8 K. The magnetization critical current density shows a rapid suppression under an applied magnetic field for T > 10 K. These results indicate that the low-T c phase exists globally in the La-doped CaFe2As2, while the high-T c phase has a small volume fraction and locally resides within small domains. The disparate critical current density determined from transport and magnetization measurements, therefore, reflects the heterogeneous superconducting phases in La-doped CaFe2As2.


La-doped CaFe2As2 Transport critical current density Two-step superconducting transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Lv, L. Deng, M. Gooch, F. Wei, Y. Sun, J. K. Meen, Y-Y. Xue, B. Lorenz and C-W. Chu, Proc. Nat. Acad. Sci. 108, 15705 (2011).ADSCrossRefGoogle Scholar
  2. [2]
    S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn and J. Paglione, Phys. Rev. B 85, 024525 (2012).ADSCrossRefGoogle Scholar
  3. [3]
    K. Gofryk, M. Pan, C. Cantoni, B. Saparov, J. E. Mitchell and A. S. Sefat, Phys. Rev. Lett. 112, 047005 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    S. R. Saha, T. Drye, S. K. Goh, L. E. Klintberg, J. M. Silver, F. M. Grosche, M. Sutherland, T. J. S. Munsie, G. M. Luke, D. K. Pratt, J. W. Lynn and J. Paglione, Phys. Rev. B 89, 134516 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    D. N. Basov and A. V. Chubukov, Nat. Phys. 7, 272 (2011).CrossRefGoogle Scholar
  6. [6]
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).ADSCrossRefGoogle Scholar
  7. [7]
    K. Zhao, Q. Q. Liu, X. C. Wang, Z. Deng, Y. X. Lv, J. L. Zhu, F. Y. Li and C. Q. Jin, Phys. Rev. B 84, 184534 (2011).ADSCrossRefGoogle Scholar
  8. [8]
    M. Rotter, M. Tegel and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).ADSCrossRefGoogle Scholar
  9. [9]
    N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara and H. Sawa, J. Phys. Soc. Jpn. 82, 123702 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki and J-I. Shimoyama, J. Am. Chem. Soc. 136, 846 (2014).CrossRefGoogle Scholar
  11. [11]
    N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud’ko and P. C. Canfield, Phys. Rev. B 78, 014523 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    M. S. Torikachvili, S. L. Bud’ko, N. Ni and P. C. Canfield, Phys. Rev. Lett. 101, 057006 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    H. Lee, E. Park, T. Park, V. A. Sidorov, F. Ronning, E. D. Bauer and J. D. Thompson, Phys. Rev. B 80, 024519 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    N. Kumar, R. Nagalakshmi, R. Kulkarni, P. L. Paulose, A. K. Nigam, S. K. Dhar and A. Thamizhavel, Phys. Rev. B 79, 012504 (2009).ADSCrossRefGoogle Scholar
  15. [15]
    K. Zhao, B. Lv, L. Deng, S-Y. Huyan, Y-Y. Xue and C-W. Chu, Proc. Nat. Acad. Sci. 113, 12968 (2016).ADSCrossRefGoogle Scholar
  16. [16]
    C. W. Chu, B. Lv, L. Z. Deng, B. Lorenz, B. Jawdat, M. Gooch, K. Shrestha, K. Zhao, X. Y. Zhu, Y. Y. Xue and F. Y. Wei, J. Phys. Conf. Ser. 449, 012014 (2013).CrossRefGoogle Scholar
  17. [17]
    Y. Sun, W. Zhou, L. J. Cui, J. C. Zhuang, Y. Ding, F. F. Yuan, J. Bai and Z. X. Shi, AIP Adv. 3, 102120 (2013).ADSCrossRefGoogle Scholar
  18. [18]
    Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang and Y. Ma, EPL 95, 67002 (2011).ADSCrossRefGoogle Scholar
  19. [19]
    B. Saparov, C. Cantoni, M. Pan, T. C. Hogan, W. Ratcliff II, S. D. Wilson, K. Fritsch, B. D. Gaulin and A. S. Sefat, Sci. Rep. 4, 4120 (2014).CrossRefGoogle Scholar
  20. [20]
    S-G. Jung, S. Shin, H. Jang, P. Mikheenko, T. H. Johansen and T. Park, Supercond. Sci. Technol. 20, 085009 (2017).ADSCrossRefGoogle Scholar
  21. [21]
    X. Liu, Y. Li, J. Wan, Z. Li and H. Pang, J. Phys.: Condens. Matter 28, 125701 (2016).Google Scholar
  22. [22]
    L. Z. Deng, B. Lv, K. Zhao, F. Y. Wei, Y. Y. Xue, Z. Wu and C. W. Chu, Phys. Rev. B 93, 054513 (2016).ADSCrossRefGoogle Scholar
  23. [23]
    R. Griessen, H-H. Wen, A. J. J. van Dalen, B. Dam, J. Rector and H. G. Schnack, Phys. Rev. Lett. 72, 1910 (1994).ADSCrossRefGoogle Scholar
  24. [24]
    F. X. Xiang, X. L. Wang, X. Xun, K. S. B. De Silva, Y. X. Wang and S. X. Dou, Appl. Phys. Lett. 102, 152601 (2013).ADSCrossRefGoogle Scholar
  25. [25]
    N. Haberkorn, J. Kim, B. Maiorov, I. Usov, G. F. Chen, W. Yu and L. Civale, Supercond. Sci. Technol. 27, 095004 (2014).ADSCrossRefGoogle Scholar
  26. [26]
    T. Tamegai, Q. P. Ding, T. Ishibashi and Y. Nakajima, Physica C 484, 31 (2013).ADSCrossRefGoogle Scholar
  27. [27]
    C. Senatore, R. Flükiger, M. Cantoni, G. Wu, R. H. Liu and X. H. Chen, Phys. Rev. B 78, 054514 (2008).ADSCrossRefGoogle Scholar
  28. [28]
    A. Yamamoto et al., Supercond. Sci. Technol. 21, 095008 (2008).ADSCrossRefGoogle Scholar
  29. [29]
    M. Eisterer, M. Zehetmayer and H. W. Weber, Phys. Rev. Lett. 90, 247002 (2003).ADSCrossRefGoogle Scholar
  30. [30]
    Y. Ding et al., Supercond. Sci. Technol. 24, 125012 (2011).ADSCrossRefGoogle Scholar
  31. [31]
    D. Ahmad, I. Park, G. C. Kim, J. H. Lee, Z-A. Ren and Y. C. Kim, Physica C 469, 1052 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Soon-Gil Jung
    • 1
  • Harim Jang
    • 1
  • Soohyeon Shin
    • 1
  • Tuson Park
    • 1
  • Won Nam Kang
    • 2
  1. 1.Center for Quantum Materials and Superconductivity (CQMS) and Department of PhysicsSungkyunkwan UniversitySuwonKorea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonKorea

Personalised recommendations