Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 2, pp 221–227 | Cite as

Subleading hadronic vacuum polarization contributions to muon g − 2: μ+μγ* → π0γ*

  • Deog Ki Hong
  • Du Hwan Kim
  • Jong-Wan Lee
Article
  • 36 Downloads

Abstract

We consider the subleading contributions of the hadronic vacuum polarization, involving the π0γ*γ* transition form factor, to the muon anomalous magnetic moment g − 2. Various models for the form factor, based on hadronic ansatzes and holographic principles, are considered: They are the Wess-Zumino-Witten, vector meson dominance, lowest meson dominance (one and two vector resonances), and anti-de Sitter/quantum chromodynamics (AdS/QCD) models. The model parameters are determined by fitting the experimental data for the e+eπ0γ total cross section. We report the following numerical result for the corrections to the muon g − 2: the resulting values of two vector resonances model are one order-of-magntitude smaller than the one obtained from the dispersion relation.

Keywords

Anomalous magnetic moment of muon Hadronic vacuum polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Jegerlehner and A. Nyffeler, Phys. Rept. 477, 1 (2009). doi:10.1016/j.physrep.2009.04.003 [arXiv:0902. 3360 [hep-ph]].ADSCrossRefGoogle Scholar
  2. [2]
    C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016). doi:10.1088/1674-1137/40/10/100001ADSCrossRefGoogle Scholar
  3. [3]
    F. Jegerlehner, arXiv:1705.00263 [hep-ph].Google Scholar
  4. [4]
    D. W. Hertzog, EPJ Web Conf. 118, 01015 (2016). doi:10.1051/epjconf/201611801015 [arXiv:1512.00928 [hep-ex]].CrossRefGoogle Scholar
  5. [5]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Phys. Rev. Lett. 109, 111808 (2012). doi:10.1103/Phys RevLett.109.111808 [arXiv:1205.5370 [hep-ph]].ADSCrossRefGoogle Scholar
  6. [6]
    C. Gnendiger, D. Stckinger and H. Stckinger-Kim, Phys. Rev. D 88, 053005 (2013). doi:10.1103/PhysRev D.88.053005 [arXiv:1306.5546 [hep-ph]].ADSCrossRefGoogle Scholar
  7. [7]
    M. Della Morte,_B. Jager, A. Juttner and H. Wittig, JHEP 1203, 055 (2012). doi:10.1007/JHEP03(2012)055 [arXiv:1112.2894 [hep-lat]].ADSGoogle Scholar
  8. [8]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Phys. Rev. D 85, 074504 (2012). doi:10.1103/PhysRevD.85.074504 [arXiv:1107.1497 [hep-lat]].ADSCrossRefGoogle Scholar
  9. [9]
    F. Burger et al. [ETM Collaboration], JHEP 1402, 099 (2014). doi:10.1007/JHEP02(2014)099 [arXiv:1308.4327 [hep-lat]].ADSCrossRefGoogle Scholar
  10. [10]
    T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Phys. Rev. Lett. 114, 012001 (2015). doi:10.1103/PhysRevLett.114.012001 [arXiv:1407.2923 [hep-lat]].ADSCrossRefGoogle Scholar
  11. [11]
    T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin and C. Lehner, Phys. Rev. D 93, 014503 (2016). doi:10.1103/PhysRevD.93.014503 [arXiv:1510.07100 [hep-lat]].ADSCrossRefGoogle Scholar
  12. [12]
    B. Chakraborty, C. T. H. Davies, P. G. de Oliviera, J. Koponen, G. P. Lepage and R. S. Van de Water, Phys. Rev. D 96, 034516 (2017). doi:10.1103/PhysRevD.96.034516 [arXiv:1601.03071 [hep-lat]].ADSCrossRefGoogle Scholar
  13. [13]
    S. Borsanyi et al. [Budapest-Marseille-Wuppertal Collaboration], arXiv:1711.04980 [hep-lat].Google Scholar
  14. [14]
    M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034 (2002). doi:10.1103/PhysRevD.65.073034 [hepph/ 0111058].ADSCrossRefGoogle Scholar
  15. [15]
    A. Nyffeler, Phys. Rev. D 94, 053006 (2016). doi:10.1103/PhysRevD.94.053006 [arXiv:1602.03398 [hep-ph]].ADSCrossRefGoogle Scholar
  16. [16]
    D. K. Hong and D. Kim, Phys. Lett. B 680, 480 (2009). doi:10.1016/j.physletb.2009.09.026 [arXiv:0904.4042 [hep-ph]].ADSCrossRefGoogle Scholar
  17. [17]
    D. K. Hong, D. Kim and S. Matsuzaki, Phys. Rev. D 81, 073005 (2010). doi:10.1103/PhysRevD.81.073005” [arXiv:0911.0560 [hep-ph]].ADSCrossRefGoogle Scholar
  18. [18]
    L. Cappiello, O. Cata and G. D’Ambrosio, Phys. Rev. D 83, 093006 (2011). doi:10.1103/PhysRevD.83.093006 [arXiv:1009.1161 [hep-ph]].ADSCrossRefGoogle Scholar
  19. [19]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, arXiv:1706.09436 [hep-ph].Google Scholar
  20. [20]
    T. Blum, Phys. Rev. Lett 91, 052001 (2003). doi:10.1103/PhysRevLett.91.052001 [hep-lat/0212018].ADSCrossRefGoogle Scholar
  21. [21]
    E. de Rafael, Phys. Lett. B 322, 239 (1994). doi:10.1016/0370-2693(94)91114-2 [hep-ph/9311316].ADSCrossRefGoogle Scholar
  22. [22]
    S. L. Adler, Phys. Rev. 177, 2426 (1969). doi:10.1103/PhysRev.177.2426.ADSCrossRefGoogle Scholar
  23. [23]
    J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969). doi:10.1007/BF02823296.ADSCrossRefGoogle Scholar
  24. [24]
    G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979). doi:10.1016/0370-2693(79)90554-9.ADSCrossRefGoogle Scholar
  25. [25]
    G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980). doi:10.1103/PhysRevD.22.2157.ADSCrossRefGoogle Scholar
  26. [26]
    S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808 (1981). doi:10.1103/PhysRevD.24.1808.ADSCrossRefGoogle Scholar
  27. [27]
    V. A. Novikov, M. A. Shifma, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Nucl. Phys. B 237, 525 (1984). doi:10.1016/0550-3213(84)90006-3.ADSCrossRefGoogle Scholar
  28. [28]
    B. Moussallam, Phys. Rev. D 51, 4939 (1995). doi:10.1103/PhysRevD.51.4939 [hep-ph/9407402].ADSCrossRefGoogle Scholar
  29. [29]
    M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Phys. Rev. Lett. 83, 5230 (1999). doi:10.1103/PhysRevLett.83.5230 [hep-ph/9908283].ADSCrossRefGoogle Scholar
  30. [30]
    M. Knecht and A. Nyffeler, Eur. Phys. J. C 21, 659 (2001). doi:10.1007/s100520100755 [hep-ph/0106034].ADSCrossRefGoogle Scholar
  31. [31]
    K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004). doi:10.1103/PhysRevD.70.113006, [hepph/ 0312226].ADSCrossRefGoogle Scholar
  32. [32]
    A. Grardin, H. B. Meyer and A. Nyffeler, Phys. Rev. D 94, 074507 (2016). doi:10.1103/PhysRevD.94.074507 [arXiv:1607.08174 [hep-lat]].ADSCrossRefGoogle Scholar
  33. [33]
    H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 77, 115024 (2008). doi:10.1103/PhysRevD.77.115024 [arXiv:0803.1143 [hep-ph]].ADSCrossRefGoogle Scholar
  34. [34]
    H. R. Grigoryan and A. V. Radyushkin, Phys. Lett. B 650, 421 (2007). doi:10.1016/j.physletb.2007.05.044 [hep-ph/079].ADSCrossRefGoogle Scholar
  35. [35]
    S. Hong, S. Yoon and M. J. Strassler, JHEP 04, 003 (2006). doi:10.1088/1126-6708/2006/04/003 [hepth/ 0409118].ADSCrossRefGoogle Scholar
  36. [36]
    M. N. Achasov et al. Phys. Rev. D 93, 092001 (2016). doi:10.1103/PhysRevD.93.092001 [arXiv:1601.08061 [hep-ex]].ADSCrossRefGoogle Scholar
  37. [37]
    V. B. Berestetskii, O. N. Krokhin and A. K. Khelbnikov, JETP 3, 761 (1965).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsPusan National UniversityBusanKorea

Personalised recommendations