Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 12, pp 1442–1453 | Cite as

Use of Graphene for Solar Cells

  • Dong Hee Shin
  • Suk-Ho Choi
Review Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

In the last decade, graphene has been spotlighted as one of the novel materials for transparent conductive electrodes (TCEs) of solar cells. This paper provides an overview of recent progress for the application of graphene TCEs in solar cells employing representative active materials. This review focuses especially on the structure and characteristics of solar cells employing three majorgroup materials: Si-based materials (crystalline Si, porous Si, Si nanowire, and Si quantum dots), compound (CdTe and GaAs) thin films; organic and perovskite materials. The graphene TCEs are very promising for producing high-efficiency solar cells, but their stabilities are a key issue to overcome for the practical applications. The significance and outlook of the graphene-TCE-based solar cells are finally summarized.

Keywords

Graphene Solar cell Transparent conductive electrode Efficiency Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A Green, Semicond. Sci. Technol. 8, 1 (1993).ADSGoogle Scholar
  2. [2]
    J. Hupkes et al., Sol. Energy Mater. Sol. Cells 90, 3054 (2006).Google Scholar
  3. [3]
    J. Li, H. Y. Yu and Y Li, Nanoscale 3, 4888 (2011).ADSGoogle Scholar
  4. [4]
    B-R. Huang, Y-K. Yang and W-L. Yang, Nanotechnology 25, 035401 (2014).ADSGoogle Scholar
  5. [5]
    J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993).ADSGoogle Scholar
  6. [6]
    I. Repins et al., Prog. Photovolt.: Res. Appl. 16, 235 (2008).Google Scholar
  7. [7]
    C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).ADSGoogle Scholar
  8. [8]
    B. O’Regan and M. Gratzel, Nature 353, 737 (1991).ADSGoogle Scholar
  9. [9]
    J. J. M. Halls et al., Nature 376, 498 (1995).ADSGoogle Scholar
  10. [10]
    R. W. Miles, G. Zoppi and Ian Forbes, Mater. Today 10, 21 (2007).Google Scholar
  11. [11]
    S. P. Singh et al., Adv. Funct. Mater. 22, 4087 (2012).Google Scholar
  12. [12]
    S. P. Singh et al., J. Phys. Chem. C 116, 5941 (2012).Google Scholar
  13. [13]
    Q. Xue et al., RSC Adv. 5, 775 (2015).Google Scholar
  14. [14]
    J. Bullock et al., Sci. Rep. 7, 9085 (2017).ADSGoogle Scholar
  15. [15]
    A. Ingenito et al., Sol. PRL 1, 1700040 (2017).Google Scholar
  16. [16]
    B. J. Kim et al., Energy Environ. Sci. 8, 916 (2015).Google Scholar
  17. [17]
    S. W. Seo et al., Nanotechnology 28, 425203 (2017).Google Scholar
  18. [18]
    D. Angmo and F. C. Krebs, J. Appl. Polym. Sci. 129, 1 (2013).Google Scholar
  19. [19]
    F. Basarir et al., Mater. Today Chem. 3, 60 (2017).Google Scholar
  20. [20]
    S. Bae et al., Nat. Nanotech. 5, 574 (2010).ADSGoogle Scholar
  21. [21]
    J. Wu et al., Appl. Phys. Lett. 92, 263302 (2008).ADSGoogle Scholar
  22. [22]
    D. H. Shin et al., Adv. Mater. 27, 2614 (2015).Google Scholar
  23. [23]
    L. Yang et al., ACS Appl. Mater. Interfaces 7, 4135 (2015).Google Scholar
  24. [24]
    L. D’Arsie et al., RSC Adv. 6, 113185 (2016).Google Scholar
  25. [25]
    K. C. Kwon, K. S. Choi and S. Y. Kim, Adv. Funct. Mater. 22, 4724 (2012).Google Scholar
  26. [26]
    D. H. Shin et al., J. Appl. Phys. 123, 123101 (2018).ADSGoogle Scholar
  27. [27]
    C. W. Jang et al., J. Alloys Compd. 621, 1 (2015).Google Scholar
  28. [28]
    J. S. Kim et al., Adv. Mater. 28, 4803 (2016).Google Scholar
  29. [29]
    X. Miao et al., Nano Lett. 12, 2745 (2012).ADSGoogle Scholar
  30. [30]
    D. L. Duong et al., Phys. Rev. B 85, 205413 (2012).ADSGoogle Scholar
  31. [31]
    D. H. Shin et al., Nanotechnology 25, 125701 (2014).ADSGoogle Scholar
  32. [32]
    S. Kim et al., ACS Nano 7, 5168 (2013).Google Scholar
  33. [33]
    H-J. Shin et al., J. Am. Chem. Soc. 132, 15603 (2010).Google Scholar
  34. [34]
    D. H. Shin et al., J. Alloy. Compd. 726, 1047 (2017).Google Scholar
  35. [35]
    J. M. Kim et al., Nano Energy 43, 124 (2018).Google Scholar
  36. [36]
    D. H. Shin et al., Appl. Surf. Sci. 433, 181 (2018).ADSGoogle Scholar
  37. [37]
    Y. Kim et al., ACS Nano 8, 868 (2014).Google Scholar
  38. [38]
    S. De and J. N. Coleman, ACS Nano 4, 2713 (2010).Google Scholar
  39. [39]
    L. Gao et al., Appl. Phys. Lett. 97, 183109 (2010).ADSGoogle Scholar
  40. [40]
    W. Bao et al., Nat. Commun. 5, 4224 (2014).Google Scholar
  41. [41]
    X. Li et al., Adv. Mater. 22, 2743 (2010).Google Scholar
  42. [42]
    Y. Tsuboi et al., Nanoscale 7, 14476 (2015).ADSGoogle Scholar
  43. [43]
    T. Cui et al., J. Mater. Chem. A 1, 5736 (2013).Google Scholar
  44. [44]
    S. Das et al., J. Mater. Chem. 22, 20490 (2012).Google Scholar
  45. [45]
    J. Zhao et al., Appl. Surf. Sci. 434, 102 (1993).ADSGoogle Scholar
  46. [46]
    E. Shi et al., Nano Lett. 13, 1776 (2013).ADSGoogle Scholar
  47. [47]
    X. Liu et al., Appl. Phys. Lett. 105, 183901 (2014).ADSGoogle Scholar
  48. [48]
    X. Liu et al., Appl. Phys. Lett. 106, 233901 (2015).ADSGoogle Scholar
  49. [49]
    X. Li et al., Nanoscale 65, 1945 (2013).ADSGoogle Scholar
  50. [50]
    Y. F. Li et al., Appl. Phys. Lett. 104, 043903 (2014).ADSGoogle Scholar
  51. [51]
    S. Diao et al., Nano Energy 31, 359 (2017).Google Scholar
  52. [52]
    Y. Lin et al., Energy Environ. Sci. 6, 108 (2013).Google Scholar
  53. [53]
    J. M. Kim et al., Curr. Appl. Phys. 17, 1136 (2017).ADSGoogle Scholar
  54. [54]
    B. Bari et al., J. Mater. Chem. A 4, 11365 (2016).Google Scholar
  55. [55]
    Q. Xue et al., Nanoscale Res. Lett. 12, 480 (2017).ADSGoogle Scholar
  56. [56]
    C. Xie et al., J. Mater. Chem. A 1, 15348 (2013).Google Scholar
  57. [57]
    W. J. Aziz et al., Optik 122, 1462 (2011).ADSGoogle Scholar
  58. [58]
    V. M. Aroutiouniana, Kh. S. Martirosyana, A. S. Hovhannisyana and P. G. Soukiassian, J. Contemp. Phys. 43, 72 (2008).Google Scholar
  59. [59]
    P. Menna, G. Di Francia and V. La Ferrara, Sol. Energy. Mater. Sol. Cells 37, 13 (1995).Google Scholar
  60. [60]
    C. R. B. Miranda, M. R. Baldan, A. F. Beloto and N. G. Ferreira, J. Braz. Chem. Soc. 19, 769 (2008).Google Scholar
  61. [61]
    D. H. Shin et al., J. Alloy. Compd. 715, 291 (2017).Google Scholar
  62. [62]
    J. H. Kim et al., J. Mater. Chem. C 5, 9005 (2017).Google Scholar
  63. [63]
    K. Peng et al., Small 11, 1062 (2005).Google Scholar
  64. [64]
    V. Sivakov et al., Nano Lett. 9, 1549 (2009).ADSGoogle Scholar
  65. [65]
    G. Fan et al., ACS Appl. Mater. Interfaces 3, 721 (2011).Google Scholar
  66. [66]
    X. Zhang et al., J. Mater. Chem. A 1, 6593 (2013).ADSGoogle Scholar
  67. [67]
    L. Pavesi et al., Nature 408, 440 (2000).ADSGoogle Scholar
  68. [68]
    Y. Duan, J. F. Kong and W. Z. Shen, J. Raman Spectrosc. 43, 756 (2012).ADSGoogle Scholar
  69. [69]
    E-C. Cho et al., Nanotechnology 19, 245201 (2008).ADSGoogle Scholar
  70. [70]
    S. Park, E. Cho, X. Hao, G. Conibeer and M. A. Green, in Proceedings of the 2008 Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD’08) (Sydney, July 28 - August 1, 2008), p. 316.Google Scholar
  71. [71]
    S. H. Hong et al., Appl. Phys. Lett. 97, 072108 (2010).ADSGoogle Scholar
  72. [72]
    S. H. Hong et al., Nanotechnology 22, 425203 (2011).Google Scholar
  73. [73]
    S. H. Lee, G. Y. Kwak, S. Hong, C. Kim, S. Kim, A. Kim and K. J. Kim, Nanotechnology 28, 035402 (2017).ADSGoogle Scholar
  74. [74]
    T. Saga, NPG Asia Mater. 2, 96 (2010).Google Scholar
  75. [75]
    T. Lin, F. Huang, J. Liang and Y. Wang Energy Environ. Sci. 4, 862 (2011).Google Scholar
  76. [76]
    H. Bi et al., Adv. Mater. 23, 3202 (2011).Google Scholar
  77. [77]
    W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).ADSGoogle Scholar
  78. [78]
    V. N. Vorobev and Y. F. Sokolov, Sov. Phys. Semicond. 5, 616 (1971).Google Scholar
  79. [79]
    W. Jie, F. Zheng and J. Hao, Appl. Phys. Lett. 103, 233111 (2013).ADSGoogle Scholar
  80. [80]
    X. Li et al., Nano Energy. 16, 310 (2015).Google Scholar
  81. [81]
    H. Cao et al., J. Power Sources 264, 168 (2014).ADSGoogle Scholar
  82. [82]
    Z. AL-Busaidi, C. Pearson, C. Groves and M. C. Petty, Sol. Energy Mater. Sol. Cells 160, 101 (2017).Google Scholar
  83. [83]
    Y. Galagan et al., Sol. Energy Mater. Sol. Cells 95, 1339 (2011).Google Scholar
  84. [84]
    K. Li et al., Adv. Mater. 26, 7271 (2014).ADSGoogle Scholar
  85. [85]
    S-I. Na, S-S. Kim, J. Jo and D-Y. Kim, Adv. Mater. 20, 4061 (2008).Google Scholar
  86. [86]
    K. Sakamoto et al., Sci. Rep. 8, 2825 (2018).ADSGoogle Scholar
  87. [87]
    L. G. D. Arco et al., ACS Nano 4, 2865 (2010).Google Scholar
  88. [88]
    Z. Liu, J. Li and F. Yan, Adv. Mater. 25, 4296 (2013).Google Scholar
  89. [89]
    S. Lee et al., Nanotechnology 23, 344013 (2012).Google Scholar
  90. [90]
    K-W. Seo et al., J Vac. Sci. Technol. A 32, 061201 (2014).Google Scholar
  91. [91]
    D. H. Shin et al., J. Alloy. Compd. 744, 1 (2018).Google Scholar
  92. [92]
    H. Park et al., Nano Lett. 14, 5148 (2014).ADSGoogle Scholar
  93. [93]
    Y. Song, S. Chang, S. Gradecak and J. Kong, Adv. Energy Mater. 6, 1600847 (2016).Google Scholar
  94. [94]
    D. H. Shin et al., ACS Appl. Mater. Interfaces 10, 3596 (2018).Google Scholar
  95. [95]
    A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).Google Scholar
  96. [96]
    J-H. Im et al., Nanoscale 3, 4088 (2011).ADSGoogle Scholar
  97. [97]
    H-S. Kim et al., Sci. Rep. 2, 591 (2012).Google Scholar
  98. [98]
    M. M. Lee et al., Science. 338, 643 (2012).ADSGoogle Scholar
  99. [99]
    W. S. Yang et al., Science. 348, 1234 (2015).ADSGoogle Scholar
  100. [100]
    B. J. Kim et al., Energy Environ. Sci. 8, 916 (2015).Google Scholar
  101. [101]
    Y. Li et al., Nat. Commun. 7, 10214 (2016).ADSGoogle Scholar
  102. [102]
    P. Docampo et al., Nat. Commun. 4, 2761 (2013).Google Scholar
  103. [103]
    J-H. Im et al., Nat. Nanotechnol. 9, 927 (2014).ADSGoogle Scholar
  104. [104]
    J. H. Heo et al., Nat. Photonics 7, 486 (2013).ADSGoogle Scholar
  105. [105]
    C. R-Carmona et al., Energy Environ. Sci. 7, 994 (2014).Google Scholar
  106. [106]
    F. Lang et al., J. Phys. Chem. Lett. 6, 2745 (2015).Google Scholar
  107. [107]
    K. Yan et al., Small. 11, 2269 (2015).Google Scholar
  108. [108]
    P. You, Z. Liu, Q. Tai, S. Liu and F. Yan, Adv. Mater. 27, 3632 (2015).Google Scholar
  109. [109]
    H. Sung et al., Adv. Energy Mater. 6, 1501873 (2016).Google Scholar
  110. [110]
    J. H. Heo et al., Chem. Eng. J. 323, 153 (2017).Google Scholar
  111. [111]
    C. Rold’an-Carmona et al., Energy Environ. Sci. 7, 994 (2014).Google Scholar
  112. [112]
    I. Jeon et al., Nano Lett. 15, 6665 (2015).ADSGoogle Scholar
  113. [113]
    J. Yoon et al., Energy Environ. Sci. 10, 337 (2017).Google Scholar
  114. [114]
    S. Kim et al., J. Alloy. Compd. 744, 404 (2018).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Applied Physics and Institute of Natural Sciences, College of Applied ScienceKyung Hee UniversityYonginKorea

Personalised recommendations