Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 10, pp 1095–1109 | Cite as

Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

  • Il-Ho Kim
Review Articles
  • 76 Downloads

Abstract

Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ~ (m*~ /me)3/2μκ L −1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed: intrinsic Mg2Si, doped Mg2Si:Dm (D = Al, In, Bi, Sb, Te or Se), and solid solutions of intrinsic/doped Mg2Si1 − xSn x :D m and Mg2Si1 − xGe x :D m .

Keywords

Thermoelectric Magnesium silicide Mg2Si Mg2Sn Mg2Ge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. J. Seebeck, Abh. Akad. Wiss. Berlin 249 (1822).Google Scholar
  2. [2]
    J. C. Peltier, Ann. Chem. Phys. 56, 371 (1834).Google Scholar
  3. [3]
    W. Thomson, in Proceedings of the Royal Society of Edinburgh (Royal Society of Edinburgh, 1851).Google Scholar
  4. [4]
    Y. C. Lan, A. J. Minnich, G. Chen and Z. F. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  5. [5]
    P. H. Egli, Thermoelectricity (Wiley, New York, 1960).Google Scholar
  6. [6]
    G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials (Springer, Berlin, 2001).CrossRefzbMATHGoogle Scholar
  7. [7]
    A. C. Ehrlich, Semiconductors and Semimetals Vol. 70, edited by T. Tritt (Academic Press, San Diego, 2000).Google Scholar
  8. [8]
    H. J. Goldsmid, Semiconductors and Semimetals Vol. 69, edited by T. Tritt (Academic Press, San Diego, 2000).Google Scholar
  9. [9]
    J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Sol. 5, 142 (1958).ADSCrossRefGoogle Scholar
  10. [10]
    H. Kohler, Phys. Stat. Sol. B 73, 95 (1976).ADSCrossRefGoogle Scholar
  11. [11]
    H. J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964).CrossRefGoogle Scholar
  12. [12]
    Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao and T. M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    C. M. Bhandari and D. M. Rowe, Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, Boca Raton, 1995).Google Scholar
  14. [14]
    W. Liu, Q. Zhang, X. Tang, H. Li and J. Sharp, J. Electron. Mater. 40, 1062 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    H. Lee, Thermoelectrics: Design and Materials (Wiley, West Sussex, 2017).Google Scholar
  16. [16]
    H. J. Goldsmid, Applications of Thermoelectricity (Methuen Monograph, London, 1964).Google Scholar
  17. [17]
    D. J. Bergman and O. Levy, J. Appl. Phys. 70, 6821 (1991).ADSCrossRefGoogle Scholar
  18. [18]
    D. J. Bergman and L. G. Fel, J. Appl. Phys. 85, 8205 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).ADSCrossRefGoogle Scholar
  20. [20]
    J. Tani and H. Kido, Phys. B 364, 218 (2005).ADSCrossRefGoogle Scholar
  21. [21]
    J. Tani and H. Kido, Jpn. J. Appl. Phys. 46, 3309 (2007).ADSCrossRefGoogle Scholar
  22. [22]
    R. G. Morris, R. D. Redin and G. C. Danielson, Phys. Rev. 109, 1909 (1958).ADSCrossRefGoogle Scholar
  23. [23]
    T. C. Harman, P. J. Taylor, D. L. Spears and M. P. Walsh, J. Electron. Mater. 29, L1 (2000).ADSCrossRefGoogle Scholar
  24. [24]
    T. Caillat, A. Borshchevsky and J. P. Fleurial, J. Appl. Phys. 80, 4442 (1996).ADSCrossRefGoogle Scholar
  25. [25]
    S. Bose, H. N. Acharya and H. D. Banerjee, J. Mater. Sci. 28, 5461 (1993).ADSCrossRefGoogle Scholar
  26. [26]
    V. K. Zaitsev, M. I. Fedorov, I. S. Eremin and E. A. Gurieva, Thermoelectrics Handbook, edited by D. M. Rowe (CRC Press, Boca Raton, 2006).Google Scholar
  27. [27]
    M. Yoshinaga, T. Iida, M. Noda, T. Endo and Y. Takanashi, Thin Sol. Films 461, 86 (2004).ADSCrossRefGoogle Scholar
  28. [28]
    N. Savvides and H. Y. Chen, J. Electron. Mater. 39, 2136 (2010).ADSCrossRefGoogle Scholar
  29. [29]
    M. C. Nicolau, in Proceedings of the 2nd International Conference on Thermoelectric Energy Conversion (IEEE, Arlington, 1976).Google Scholar
  30. [30]
    Y. Noda, H. Kon, Y. Furukawa, I. A. Nishida and K Masumoto, Mater. Trans, JIM 33, 851 (1992).CrossRefGoogle Scholar
  31. [31]
    C. Vining, in Proceedings of the 2nd International Conference on Thermoelectric Energy (IEEE, Cardiff, 1991).Google Scholar
  32. [32]
    A. Sacklowski, Ann. Phys. 382, 241 (1925).CrossRefGoogle Scholar
  33. [33]
    G. H. Grosch and K. J. Range, J. Alloys Compd. 235, 250 (1996).CrossRefGoogle Scholar
  34. [34]
    E. N. Nikitin, E. N. Tkalenko, V. K. Zaitsev, A. I. Zaslavskii and A. K. Kuznetsov, Neorg. Mater. 4, 1902 (1968).Google Scholar
  35. [35]
    G. Busch and U. Winkler, Helv. Phys. Acta. 26, 578 (1953).Google Scholar
  36. [36]
    R. J. Labotz, D. R. Mason and D. F. O’Kane, J. Electron. Chem. Soc. 110, 127 (1963).CrossRefGoogle Scholar
  37. [37]
    J. Y. Jung, I. H. Kim, S. M. Choi, W. S. Seo and S. U. Kim, J. Korean Phys. Soc. 57, 1005 (2010).CrossRefGoogle Scholar
  38. [38]
    S. W. You, Solid-State Synthesis and Thermoelectric Properties of Magnesium Silicides, dissertation for Ph. D. (Korea National University of Transportation, Chungju, 2014).Google Scholar
  39. [39]
    J. Y. Jung and I. H. Kim, Electron. Mater. Lett. 6, 187 (2010).ADSCrossRefGoogle Scholar
  40. [40]
    J. Y. Jung and I. H. Kim, J. Electron. Mater. 40, 1144 (2011).ADSCrossRefGoogle Scholar
  41. [41]
    S. W. You and I. H. Kim, Curr. Appl. Phys. 11, S392 (2011).CrossRefGoogle Scholar
  42. [42]
    S. W. You, S. M. Choi, W. S. Seo, S. U. Kim, K. W. Jang, J. I. Lee, S. C. Ur and I. H. Kim, Mater. Sci. Forum 724, 385 (2012).CrossRefGoogle Scholar
  43. [43]
    S. W. You, I. H. Kim, S. M. Choi, W. S. Seo and S. U. Kim, AIP Conf. Proc. 1449, 195 (2012).ADSCrossRefGoogle Scholar
  44. [44]
    S. W. You, K. H. Park, I. H. Kim, S. M. Choi, W. S. Seo and S. U. Kim, J. Electron. Mater. 41, 1675 (2012).ADSCrossRefGoogle Scholar
  45. [45]
    S. W. You, I. H. Kim, S. M. Choi, W. S. Seo and S. U. Kim, J. Electron. Mater. 42, 1490 (2013).ADSCrossRefGoogle Scholar
  46. [46]
    S. W. You, I. H. Kim, S. M. Choi and W. S. Seo, J. Korean Phys. Soc. 63, 2153 (2013).ADSCrossRefGoogle Scholar
  47. [47]
    S. W. You, I. H. Kim, S. M. Choi and W. S. Seo, J. Cer. Proc. Resear. 15, 398 (2014).Google Scholar
  48. [48]
    S. W. You, I. H. Kim, S. M. Choi and W. S. Seo, J. Nanomater. Article ID 815925, 1 (2013).Google Scholar
  49. [49]
    S. W. You and I. H. Kim, J. Korean Phys. Soc. 64, 690 (2014).ADSCrossRefGoogle Scholar
  50. [50]
    S. W. You, D. K. Shin and I. H. Kim, J. Korean Phys. Soc. 64, 1346 (2014).ADSCrossRefGoogle Scholar
  51. [51]
    S. W. You, D. K. Shin and I. H. Kim, J. Korean Phys. Soc. 65, 57 (2014).ADSCrossRefGoogle Scholar
  52. [52]
    S. W. You, D. K. Shin and I. H. Kim, J. Korean Phys. Soc. 65, 691 (2014).ADSCrossRefGoogle Scholar
  53. [53]
    S. W. You, D. K. Shin, S. C. Ur and I. H. Kim, J. Electron. Mater. 44, 1504 (2015).ADSCrossRefGoogle Scholar
  54. [54]
    Q. Zhang, X. B. Zhao, H. Yin and T. J. Zhu, J. Alloys Compd. 464, 9 (2008).CrossRefGoogle Scholar
  55. [55]
    M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M Fukano and Y. Takanashi, J. Cryst. Growth 304, 196 (2007).ADSCrossRefGoogle Scholar
  56. [56]
    J. Schilz, M. Riffel, K. Pixius and H. J. Meyer, Powder Technol. 105, 149 (1999).CrossRefGoogle Scholar
  57. [57]
    E. N. Nikitin, V. G. Bazanov and V. I. Tarasov, Sov. Phys. Sol. Stat. 3, 2648 (1961).Google Scholar
  58. [58]
    C. B. Vining, Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, Boca Raton, 1995).Google Scholar
  59. [59]
    L. M. Zhang, Y. G. Leng, H. Y. Jiang, L. D. Chen and T. Hirai, Mater. Sci. Eng. B 86, 195 (2001).CrossRefGoogle Scholar
  60. [60]
    W. Luo, M. Yang, F. Chen, Q. Shen, H. Jiang and L. Zhang, Mater. Sci. Eng. B 157, 96 (2009).CrossRefGoogle Scholar
  61. [61]
    C. R. Clark, C.Wright, C. Suryanarayana, E. G. Baburaj and F. H. Froes, Mater. Lett. 33, 71 (1997).CrossRefGoogle Scholar
  62. [62]
    T. Aizawa and R. Song, Intermet. 14, 382 (2006).CrossRefGoogle Scholar
  63. [63]
    R. B. Song, T. Aizawa and J. Q. Sun, Mater. Sci. Eng. B 136, 111 (2007).CrossRefGoogle Scholar
  64. [64]
    J. Tani and H. Kido, J. Alloys Compd. 466, 335 (2008).CrossRefGoogle Scholar
  65. [65]
    J. Tani and H. Kido, Intermet. 15, 1202 (2007).CrossRefGoogle Scholar
  66. [66]
    C. C. Koch, Material Science and Technology 7, edited by R. W. Cahn, P. Haasen and E. J. Kramer (VCHWeinheim, Germany, 1991).Google Scholar
  67. [67]
    B. A. Cook et al., in Proceedings of the 24th Intersociety Energy Conversion Engineering Conference (IEEE, Washington DC, 1989).Google Scholar
  68. [68]
    C. Suryanarayana, Bibliography on Mechanical Alloying and Milling (Cambridge International Science Publishing, Cambridge, 1995).Google Scholar
  69. [69]
    P. Zwolenski, J. Tobola and S. Kaprzyk, J. Electron. Mater. 40, 889 (2011).ADSCrossRefGoogle Scholar
  70. [70]
    T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, T. Nakajima, H. Taguchi and Y. Takanashi, J. Electron. Mater. 39, 1708 (2010).ADSCrossRefGoogle Scholar
  71. [71]
    T. Sakamoto, T. Iida, S. Kurosaki, K. Yano, H. Taguchi, K. Nishio and Y. Takanashi, J. Electron. Mater. 40, 629 (2011).ADSCrossRefGoogle Scholar
  72. [72]
    C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiely & Sons, Inc., New York, 1986).Google Scholar
  73. [73]
    P. S. Kireev, Semiconductor Physics (Mir Publishers, Moscow, 1978).Google Scholar
  74. [74]
    H. J. Goldsmid, Electronic Refrigeration (Pion Limited, London, 1985).Google Scholar
  75. [75]
    V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Kondtantinov, A. Yu. Samunin and M. V. Vedernikov, Phys. Rev. B 74, 045207 (2006).ADSCrossRefGoogle Scholar
  76. [76]
    V. K. Zaitsev et al., in Proceedings of the 21st International Conference on Thermoelectrics (IEEE, Beijing, 2001).Google Scholar
  77. [77]
    M. I. Fedorov et al., in Proceedings of the 22nd International Conference on Thermoelectrics (IEEE, La Grande- Motte, 2003).Google Scholar
  78. [78]
    T. J. Zhu, Y. Q. Cao, Q. Zhang and X. B. Zhao, J. Electron. Mater. 39, 1990 (2010).ADSCrossRefGoogle Scholar
  79. [79]
    S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009).ADSCrossRefGoogle Scholar
  80. [80]
    A. Kozlov, J. Gröbner and R. Schmid-Fetzer, J. Alloys Compd. 509, 3326 (2011).CrossRefGoogle Scholar
  81. [81]
    X. Zhang, Q. Lu, L. Wang, F. Zhang and J. X. Zhang, J. Electron. Mater. 39, 1413 (2010).ADSCrossRefGoogle Scholar
  82. [82]
    W. Liu, X. F. Tang, H. Li, J. Sharp, X. Y. Zhou and C. Uher, Chem. Mater. 23, 5256 (2011).CrossRefGoogle Scholar
  83. [83]
    W. Liu, X. F. Tang, H. Li, K. Yin, J. Sharp and X. Y. Zhou, J. Mater. Chem. 22, 13653 (2012).CrossRefGoogle Scholar
  84. [84]
    E. Ratai, M. P. Augustine and S. M. Kauzlarich, J. Phys. Chem. B 107, 12573 (2003).CrossRefGoogle Scholar
  85. [85]
    F. Vazquez, R. A. Forman and M. Cardona, Phys. Rev. 176, 905 (1968).ADSCrossRefGoogle Scholar
  86. [86]
    R. Song, Y. Liu and T. Aizawa, J. Mater. Sci. Technol. 21, 618 (2005).CrossRefGoogle Scholar
  87. [87]
    W. Liu, X. Tang and J. Sharp, J. Phys. D 43, 085406 (2010).ADSCrossRefGoogle Scholar
  88. [88]
    H. Y. Chen and N. Savvides, J. Electron. Mater. 38, 1056 (2009).ADSCrossRefGoogle Scholar
  89. [89]
    T. Aizawa, R. Song and A. Yamamoto, Mater. Trans. 46, 1490 (2005).CrossRefGoogle Scholar
  90. [90]
    M. Akasaka, T. Iida, K. Nishio and Y. Takanashi, Thin Sol. Films 515, 82 (2007).CrossRefGoogle Scholar
  91. [91]
    H. L. Gao, X. X. Liu, T. J. Zhu, S. H. Yang and X. B. Zhao, J. Electron. Mater. 40, 830 (2011).ADSCrossRefGoogle Scholar
  92. [92]
    V. K. Zaitsev et al., in Proceedings of the 21st International Conference on Thermoelectrics (IEEE, Long Beach, 2002).Google Scholar
  93. [93]
    M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai and N. Hamada, J. Appl. Phys. 104, 013703 (2008).ADSCrossRefGoogle Scholar
  94. [94]
    H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont and H. Scherrer, J. Alloys Compd. 509, 6503 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Korea National University of TransportationChungjuKorea

Personalised recommendations