Journal of the Korean Physical Society

, Volume 71, Issue 12, pp 917–922 | Cite as

Application of the momentum kick model to pbpb collisions at \(\sqrt {{s_{NN}}} \) = 2.76 TeV at the LHC

Article
  • 14 Downloads

Abstract

The “ridge structure” in the Δφη correlation has been observed in high-energy heavy-ion collisions in AuAu collisions at the Relativistic Heavy Ion Collider (RHIC), and in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC). It is known that hydrodynamic models are the most successful in explaining the phenomenon. However, there has been some doubt as to whether hydrodynamic flows could be produced in small systems, such as pp collisions, enough to generate the ridge structure. This question leads us to introduce a dynamical process between particles involved in a collision event. In this process, a near-side jet, arising close to the surface, collides with medium partons and the collided particles obtain a momentum transfer along the jet direction to be the ridge particles. Now that there exist several analysis results, based on this approach, in regard to AuAu collisions at the STAR and PHENIX and pp collisions at the LHC, we extend the application to high-energy PbPb collisions at the LHC. We conclude that the kinematic description can explain the ridge behavior formed in high-energy collisions at the LHC, independent of a scale of a collision system.

Keywords

Ridge structure Relativistic heavy ion collisions Momentum kick model Two-particle correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Adams (STAR Collaboration), Phys. Rev. Lett. 95, 152301 (2005).ADSCrossRefGoogle Scholar
  2. [2]
    J. Adams (STAR Collaboration), Phys. Rev. C 73, 064907 (2006).ADSCrossRefGoogle Scholar
  3. [3]
    J. Putschke (STAR Collaboration), J. Phys. G 34, S679 (2007).ADSCrossRefGoogle Scholar
  4. [4]
    J. Bielcikova (STAR Collaboration), J. Phys. G 34, S929 (2007).ADSCrossRefGoogle Scholar
  5. [5]
    L. Molnar (STAR Collaboration), J. Phys. G 34, S593 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    R. S. Longacre (STAR Collaboration), Int. J. Mod. Phys. E 16, 2149 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    C. Nattrass (STAR Collaboration), J. Phys. G 35, 104110 (2008).ADSCrossRefGoogle Scholar
  8. [8]
    A. Feng (STAR Collaboration), J. Phys. G 35, 104082 (2008).ADSCrossRefGoogle Scholar
  9. [9]
    P. K. Netrakanti (STAR Collaboration), J. Phys. G 35, 104010 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    O. Barannikova (STAR Collaboration), J. Phys. G 35, 104086 (2008).ADSCrossRefGoogle Scholar
  11. [11]
    M. Daugherity (STAR Collaboration), J. Phys. G 35, 104090 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    M. van Leeuwen (STAR Collaboration), Eur. Phys. J. C 61, 569 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    A. Adare (PHENIX Collaboration), Eur. Phys. J. C 78, 064907 (2009).Google Scholar
  14. [14]
    M. P. McCumber (PHENIX Collaboration), J. Phys. G 35, 104081 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    Jiangyong Jia (PHENIX Collaboration), J. Phys. G 35, 104033 (2008).ADSCrossRefGoogle Scholar
  16. [16]
    E. Wenger (PHOBOS Collaboration), J. Phys. G 35, 104080 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    V. Khachatryan (CMS Collaboration), J. High Energy Phys. 09, 091 (2010).ADSCrossRefGoogle Scholar
  18. [18]
    S. Chatrchyan (CMS Collaboration), J. High Energy Phys. 07, 076 (2011).ADSCrossRefGoogle Scholar
  19. [19]
    S. Chatrchyan (CMS Collaboration), Phys. Lett. B 718, 795 (2013).ADSCrossRefGoogle Scholar
  20. [20]
    S. Chatrchyan (CMS Collaboration), Phys. Lett. B 724, 213 (2013).ADSCrossRefGoogle Scholar
  21. [21]
    S. Chatrchyan (CMS Collaboration), J. High Energy Phys. 02, 088 (2014).ADSCrossRefGoogle Scholar
  22. [22]
    V. Khachatryan (CMS Collaboration), Phys. Lett. B 742, 200 (2015).ADSCrossRefGoogle Scholar
  23. [23]
    J. Adams (STAR Collaboration), Phys. Rev. Lett. 115, 012301 (2015).ADSCrossRefGoogle Scholar
  24. [24]
    V. Khachatryan (CMS Collaboration), J. High Energy Phys. 02, 156 (2016).ADSCrossRefGoogle Scholar
  25. [25]
    V. Khachatryan (CMS Collaboration), Phys. Lett. B 765, 193 (2017).ADSCrossRefGoogle Scholar
  26. [26]
    B. Abelev (ALICE Collaboration), Phys. Lett. B 726, 164 (2013).ADSCrossRefGoogle Scholar
  27. [27]
    J. Adam (ALICE Collaboration), Phys. Lett. B 753, 126 (2016).ADSCrossRefGoogle Scholar
  28. [28]
    C. B. Chiu and R. C. Hwa, Phys. Rev. C 79, 034901 (2009).ADSCrossRefGoogle Scholar
  29. [29]
    B. Zhang, C. M. Ko, B-A. Li, Z-W. Lin, Phys. Rev. C 61, 067901 (2000).ADSCrossRefGoogle Scholar
  30. [30]
    Z-W. Lin, C. M. Ko, B-A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005).ADSCrossRefGoogle Scholar
  31. [31]
    C. Y. Wong, Phys. Rev. C 76, 054908 (2007).ADSCrossRefGoogle Scholar
  32. [32]
    C. Y. Wong, Phys. Rev. C 78, 064905 (2008).ADSCrossRefGoogle Scholar
  33. [33]
    C. Y. Wong, Phys. Rev. C 80, 034908 (2009).ADSCrossRefGoogle Scholar
  34. [34]
    C. Y. Wong, Phys. Rev. C 84, 024901 (2011).ADSCrossRefGoogle Scholar
  35. [35]
    K. Werner, Iu. Karpenko and T. Pierog, Phys. Rev. Lett. 106, 122004 (2011).ADSCrossRefGoogle Scholar
  36. [36]
    J. Xu and C. M. Ko, Phys. Rev. C 84, 044907 (2011).ADSCrossRefGoogle Scholar
  37. [37]
    P. Boek and W. Broniowski, Phys. Lett. B 718, 1557 (2013).ADSCrossRefGoogle Scholar
  38. [38]
    P. Boek and W. Broniowski, Nucl. Phys. A 924, 16 (2014).ADSGoogle Scholar
  39. [39]
    E. Shuryak and I. Zahed, Phys. Rev. C 88, 044915 (2013).ADSCrossRefGoogle Scholar
  40. [40]
    T. Kalaydzhyan and E. Shuryak, Phys. Rev. C 91, 054913 (2015).ADSCrossRefGoogle Scholar
  41. [41]
    C. Y. Wong, Introduction to High-Energy Heavy Ion Collisions (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
  42. [42]
    N. N. Ajitanand, J. M. Alexander, P. Chung, W. G. Holzmann, M. Issah, Roy A. Lacey, A. Shevel, A. Taranenko and P. Danielewicz, Phys. Rev. C 72, 011902 (2005).ADSCrossRefGoogle Scholar
  43. [43]
    J. Adams (STAR Collaboration), Phys. Rev. C 70, 054907 (2004).ADSCrossRefGoogle Scholar
  44. [44]
    S. Chatrchyan (CMS Collaboration), Phys. Rev. C 87, 014902 (2013).ADSCrossRefGoogle Scholar
  45. [45]
    V. Khachatryan (CMS Collaboration), Phys. Rev. Lett. 105, 022002 (2010).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of PhysicsInha UniversityIncheonKorea

Personalised recommendations