Journal of the Korean Physical Society

, Volume 71, Issue 12, pp 886–903 | Cite as

Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

Article

Abstract

We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten’s cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten’s cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

Keywords

Covariant open string field theory D-branes Proper time Non-Abelian gauge theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).ADSCrossRefGoogle Scholar
  2. [2]
    J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995).ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Polyakov, Phys. Lett. B 103, 207 (1981).ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. Siegel, Phys. Lett. B 142, 276 (1984).ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Siegel, Phys. Lett. B 149, 157 (1984).ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    E. Witten, Nucl. Phys. B 268, 253 (1986).ADSCrossRefGoogle Scholar
  7. [7]
    H. Hata, K. Itoh, T. Kugo, H. Kunitomo, and K. Ogawa, Phys. Lett. B 172, 186 (1986).ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E. Witten, Phys. Rev. D 46, 5467 (1992).ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    V. A. Kostelecky and S. Samuel, Nucl. Phys. B 336, 263 (1990).ADSCrossRefGoogle Scholar
  10. [10]
    V. A. Kostelecky and R. Potting, Phys. Lett. B 381, 89 (1996).ADSCrossRefGoogle Scholar
  11. [11]
    A. Sen and B. Zwiebach, J. High Energy Phys. 0003, 002 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    N. Moeller and W. Taylor, Nucl. Phys. B 583, 105 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    H. M. Chan, J. E. Paton, Nucl. Phys. B 10, 516 (1969).ADSCrossRefGoogle Scholar
  14. [14]
    T. Lee, Ann. Phys. 183, 191 (1988).ADSCrossRefGoogle Scholar
  15. [15]
    T. Lee, String theory in covariant gauge, (Unpublished doctoral thesis, University of Washington, Seattle, 1987)Google Scholar
  16. [16]
    C. Becchi, A. Rouet and R. Stora, Phys. Lett. B 52, 344 (1974).ADSCrossRefGoogle Scholar
  17. [17]
    C. Becchi, A. Rouet and R. Stora, Commun. Math. Phys. 42, 127 (1975).ADSCrossRefGoogle Scholar
  18. [18]
    C. Becchi, A. Rouet and R. Stora, Ann. Phys. 98, 287 (1976).ADSCrossRefGoogle Scholar
  19. [19]
    I. V. Tyutin, Gauge Invariance in field theory and statistical physics in operator formalism, Lebedev Physics Institute preprint 39 (1975), arXiv:0812.0580.Google Scholar
  20. [20]
    R. Arnowitt, S. Deser, C. Misner, Phys. Rev. 116, 1322 (1959).ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Schwinger, Phys. Rev. 82, 664 (1951).ADSCrossRefGoogle Scholar
  22. [22]
    T. Lee, Phys. Lett. B 768, 248 (2017).ADSCrossRefGoogle Scholar
  23. [23]
    S. Mandelstam, Nucl. Phys. B 64, 205 (1973).ADSCrossRefGoogle Scholar
  24. [24]
    S. Mandelstam, Nucl. Phys. B 69, 77 (1974).ADSCrossRefGoogle Scholar
  25. [25]
    M. Kaku and K. Kikkawa, Phys. Rev. D 10, 1110 (1974).ADSCrossRefGoogle Scholar
  26. [26]
    M. Kaku and K. Kikkawa, Phys. Rev. D 10, 1823 (1974).ADSCrossRefGoogle Scholar
  27. [27]
    E. Cremmer and J. L. Gervais, Nucl. Phys. B 76, 209 (1974).ADSCrossRefGoogle Scholar
  28. [28]
    E. Cremmer and J. L. Gervais, Nucl. Phys. B 90, 410 (1975).ADSCrossRefGoogle Scholar
  29. [29]
    M. B. Green and J. H. Schwarz, Nucl. Phys. B 198, 252 (1982).ADSCrossRefGoogle Scholar
  30. [30]
    M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory Volume 1 and 2, (Cambridge University Press 1987).MATHGoogle Scholar
  31. [31]
    D. J. Gross and A. Jevicki, Nucl. Phys. B 283, 1 (1987).ADSCrossRefGoogle Scholar
  32. [32]
    D. J. Gross and A. Jevicki, Nucl. Phys. B 287, 225 (1987).ADSCrossRefGoogle Scholar
  33. [33]
    S. B. Giddings, Nucl. Phys. B 278, 242 (1986).ADSCrossRefGoogle Scholar
  34. [34]
    A. Zee, Quantum Field Theory in a Nutshell, (Princeton University Press, Pinceton, 2003).MATHGoogle Scholar
  35. [35]
    T. Lee, Phys. Lett. B 520, 385 (2001).ADSCrossRefGoogle Scholar
  36. [36]
    A. Sen, J. High Energy Phys. 0204, 048 (2002).ADSCrossRefGoogle Scholar
  37. [37]
    A. Sen, Int. J. Mod. Phys. A 20, 5513 (2005).ADSCrossRefGoogle Scholar
  38. [38]
    E. Coletti, I. Sigalov and W. Taylor, J. High Energy Phys. 0508, 104 (2005).ADSCrossRefGoogle Scholar
  39. [39]
    T. Lee, J. High Energy Phys. 0611, 056 (2006).ADSCrossRefGoogle Scholar
  40. [40]
    V. Forini, G. Grignani and G. Nardelli, J. High Energy Phys. 0604, 053 (2006).ADSCrossRefGoogle Scholar
  41. [41]
    J-C. Lee and Y. Yang, Review on High energy String Scattering Amplitudes and Symmetries of String Theory, arXiv:1510.03297 [hep-th].Google Scholar
  42. [42]
    S-H. Lai, J-C. Lee and Y. Yang, J. High Energy Phys. 11, 062 (2016).ADSCrossRefGoogle Scholar
  43. [43]
    Y-T. Huang, O. Schlotterer and C. Wen, J. High Energy Phys. 09, 155 (2016).ADSCrossRefGoogle Scholar
  44. [44]
    Y-T. Huang, W. Siegel and E. Y. Yuan, J. High Energy Phys. 09, 101 (2016).ADSCrossRefGoogle Scholar
  45. [45]
    M. B. Green and J. H. Schwarz, Nucl. Phys. B 218, 43 (1983).ADSCrossRefGoogle Scholar
  46. [46]
    M. B. Green, J. H. Schwarz and L. Brink, Nucl. Phys. B 219, 437 (1983).ADSCrossRefGoogle Scholar
  47. [47]
    M. B. Green and J. H. Schwarz, Nucl. Phys. B 243, 475 (1984).ADSCrossRefGoogle Scholar
  48. [48]
    S. Mandelstam, Prog. Theor. Phys. Suppl. 86, 163 (1986).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of PhysicsKangwon National UniversityChuncheonKorea

Personalised recommendations