Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers
- 54 Downloads
Abstract
In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction’s active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.
Keywords
Graphene Molecular electronics Molecular junctions Transition voltage spectroscopyPreview
Unable to display preview. Download preview PDF.
References
- [1]D. Xiang, X. Wang, C. Jia, T. Lee and X. Guo, Chem. Rev. 116, 4318 (2016).CrossRefGoogle Scholar
- [2]H. Song, M. A. Reed and T. Lee, Adv. Mater. 23, 1583 (2010).CrossRefGoogle Scholar
- [3]H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw and B. De Boer, Nature 441, 69 (2006).ADSCrossRefGoogle Scholar
- [4]G. Wang, Y. Kim, M. Choe, T. W. Kim and T. Lee, Adv. Mater. 23, 755 (2011).CrossRefGoogle Scholar
- [5]T. Li et al., Adv. Mater. 24, 1333 (2012).ADSCrossRefGoogle Scholar
- [6]S. Seo et al., Angew. Chem. Int. Ed. 51, 108 (2012).CrossRefGoogle Scholar
- [7]H. Jeong et al., Appl. Phys. Lett. 106, 063110 (2015).ADSCrossRefGoogle Scholar
- [8]S. Seo, M. Min, S. M. Lee and H. Lee, Nat. Commun. 4, 1920 (2013).ADSCrossRefGoogle Scholar
- [9]E. Bekyarova et al., J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle Scholar
- [10]K. S. Novoselov et al., Science 306, 666 (2004).ADSCrossRefGoogle Scholar
- [11]A. Salomon et al., Adv. Mater. 15, 1881 (2003).CrossRefGoogle Scholar
- [12]X. Li et al., Nano. Lett. 9, 4359 (2009).ADSCrossRefGoogle Scholar
- [13]Y. C. Liu and R. L. McCreery, J. Am. Chem. Soc. 117, 11254 (1995).CrossRefGoogle Scholar
- [14]T. W. Kim, G. Wang, H. Lee and T. Lee, Nanotechnology 18, 315204 (2007).CrossRefGoogle Scholar
- [15]W. Wang, T. Lee and M. A. Reed, Phys. Rev. B 68, 035416 (2003).ADSCrossRefGoogle Scholar
- [16]L. Yuan, L. Jiang, B. Zhang and C. A. Nijhuis, Angew. Chem. Int. Ed. 53, 3377 (2014).CrossRefGoogle Scholar
- [17]S. H. Choi, B. Kim and C. D. Frisbie, Science 320, 1482 (2008).ADSCrossRefGoogle Scholar
- [18]E. H. Huisman, C. M. Guédon, B. J. van Wees and S. J. van der Molen, Nano. Lett. 9, 3909 (2009).ADSCrossRefGoogle Scholar
- [19]M. Araidai and M. Tsukada, Phys. Rev. B 81, 235114 (2010).ADSCrossRefGoogle Scholar
- [20]J. M. Beebe, B. Kim, J. W. Gadzuk, C. D. Frisbie and J. G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006).ADSCrossRefGoogle Scholar
- [21]J. M. Beebe, B. Kim, C. D. Frisbie and J. G. Kushmerick, ACS. Nano. 2, 827 (2008).CrossRefGoogle Scholar
- [22]A. S. Duwez, G. Pfister-Guillouzo, J. Delhalle and J. Riga, J. Phys. Chem. B 104, 9029 (2000).CrossRefGoogle Scholar
- [23]D. M. Alloway et al., J. Phys. Chem. B 107, 11690 (2003).CrossRefGoogle Scholar