Journal of the Korean Physical Society

, Volume 71, Issue 10, pp 692–696 | Cite as

Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

  • Inho Jeong
  • Hyunwook SongEmail author


In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction’s active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.


Graphene Molecular electronics Molecular junctions Transition voltage spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Xiang, X. Wang, C. Jia, T. Lee and X. Guo, Chem. Rev. 116, 4318 (2016).CrossRefGoogle Scholar
  2. [2]
    H. Song, M. A. Reed and T. Lee, Adv. Mater. 23, 1583 (2010).CrossRefGoogle Scholar
  3. [3]
    H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw and B. De Boer, Nature 441, 69 (2006).ADSCrossRefGoogle Scholar
  4. [4]
    G. Wang, Y. Kim, M. Choe, T. W. Kim and T. Lee, Adv. Mater. 23, 755 (2011).CrossRefGoogle Scholar
  5. [5]
    T. Li et al., Adv. Mater. 24, 1333 (2012).ADSCrossRefGoogle Scholar
  6. [6]
    S. Seo et al., Angew. Chem. Int. Ed. 51, 108 (2012).CrossRefGoogle Scholar
  7. [7]
    H. Jeong et al., Appl. Phys. Lett. 106, 063110 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    S. Seo, M. Min, S. M. Lee and H. Lee, Nat. Commun. 4, 1920 (2013).ADSCrossRefGoogle Scholar
  9. [9]
    E. Bekyarova et al., J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle Scholar
  10. [10]
    K. S. Novoselov et al., Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  11. [11]
    A. Salomon et al., Adv. Mater. 15, 1881 (2003).CrossRefGoogle Scholar
  12. [12]
    X. Li et al., Nano. Lett. 9, 4359 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    Y. C. Liu and R. L. McCreery, J. Am. Chem. Soc. 117, 11254 (1995).CrossRefGoogle Scholar
  14. [14]
    T. W. Kim, G. Wang, H. Lee and T. Lee, Nanotechnology 18, 315204 (2007).CrossRefGoogle Scholar
  15. [15]
    W. Wang, T. Lee and M. A. Reed, Phys. Rev. B 68, 035416 (2003).ADSCrossRefGoogle Scholar
  16. [16]
    L. Yuan, L. Jiang, B. Zhang and C. A. Nijhuis, Angew. Chem. Int. Ed. 53, 3377 (2014).CrossRefGoogle Scholar
  17. [17]
    S. H. Choi, B. Kim and C. D. Frisbie, Science 320, 1482 (2008).ADSCrossRefGoogle Scholar
  18. [18]
    E. H. Huisman, C. M. Guédon, B. J. van Wees and S. J. van der Molen, Nano. Lett. 9, 3909 (2009).ADSCrossRefGoogle Scholar
  19. [19]
    M. Araidai and M. Tsukada, Phys. Rev. B 81, 235114 (2010).ADSCrossRefGoogle Scholar
  20. [20]
    J. M. Beebe, B. Kim, J. W. Gadzuk, C. D. Frisbie and J. G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    J. M. Beebe, B. Kim, C. D. Frisbie and J. G. Kushmerick, ACS. Nano. 2, 827 (2008).CrossRefGoogle Scholar
  22. [22]
    A. S. Duwez, G. Pfister-Guillouzo, J. Delhalle and J. Riga, J. Phys. Chem. B 104, 9029 (2000).CrossRefGoogle Scholar
  23. [23]
    D. M. Alloway et al., J. Phys. Chem. B 107, 11690 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsKyung Hee UniversityYonginKorea

Personalised recommendations