Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 10, pp 684–691 | Cite as

Investigation of thermomechanical motion in a nanomechanical resonator based on optical intensity mapping

  • Sungwan Cho
  • Sang Goon Kim
  • Kimin Hong
  • Seung-Bo ShimEmail author
  • Myunglae Jo
  • Sung Un Cho
  • Yun Daniel ParkEmail author
Article
  • 85 Downloads

Abstract

Measurement of reflected optical light from the surface of microscopic structures can offer a precise tool to investigate the oscillatory motion of micro- and nano-mechanical resonators. We demonstrate an optical investigation of multiple flexural modes of a nanomechanical resonator in thermal motion based on amplitude-modulated laser light, with higher-order resonant modes up to ~ 17 MHz measured with this technique. Scanning focused laser light reproduces the mode shape of each flexural mode, and theoretical estimation of measurement sensitivity shows a displacement sensitivity of ~ 10 −15 m/Hz1/2. For nanomechanical devices incompatible with interferometric systems, this technique can exhibit sufficient sensitivity to explore small motional states.

Keywords

Thermal motion Laser reflection measurement Mode mapping Finite element analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Lifshitz and M. Cross, in Rev. Nonlinear Dyn. Complex., edited by H. G. Schuster (John Wiley & Sons, 2008).Google Scholar
  2. [2]
    R. B. Karabalin, M. C. Cross and M. L. Roukes, Phys. Rev. B -Condens. Matter Mater. Phys. 79, 1 (2009).CrossRefGoogle Scholar
  3. [3]
    L. G. Villanueva, R. B. Karabalin, M. H. Matheny, D. Chi, J. E. Sader and M. L. Roukes, Phys. Rev. B -Condens. Matter Mater. Phys. 87, 1 (2013).CrossRefGoogle Scholar
  4. [4]
    L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross and M. L. Roukes, Phys. Rev. Lett. 110, 177208 (2013).ADSCrossRefGoogle Scholar
  5. [5]
    S-B. Shim, M. Imboden and P. Mohanty, Science 316, 95 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis and A. N. Cleland, Nature 464, 697 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert and R. W. Simmonds, Nature 475, 359 (2011).ADSCrossRefGoogle Scholar
  8. [8]
    J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer and O. Painter, Nature 478, 18 (2011).CrossRefGoogle Scholar
  9. [9]
    K. Jensen, K. Kim and A. Zettl, Nat. Nanotechnol. 3, 533 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    R. G. Knobel and A. N. Cleland, Nature 424, 291 (2003).ADSCrossRefGoogle Scholar
  11. [11]
    D. W. Carr, L. Sekaric and H. Craighead, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 16, 3821 (1998).ADSCrossRefGoogle Scholar
  12. [12]
    S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi and H. S. J. van der Zant, Nat. Phys. 4, 785 (2008).CrossRefGoogle Scholar
  13. [13]
    A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653 (1996).ADSCrossRefGoogle Scholar
  14. [14]
    F. Bondu and J. Y. Vinet, Phys. Lett. A 198, 74 (1995).ADSCrossRefGoogle Scholar
  15. [15]
    A. Gillespie and F. Raab, Phys. Rev. D 52, 577 (1995).ADSCrossRefGoogle Scholar
  16. [16]
    S. Zaitsev, A. K. Pandey, O. Shtempluck and E. Buks, Phys. Rev. E -Stat. Nonlinear, Soft Matter Phys. 84, 46605 (2011).ADSCrossRefGoogle Scholar
  17. [17]
    S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero and E. M. Weig, Appl. Phys. Lett. 102, 151910 (2013).ADSCrossRefGoogle Scholar
  18. [18]
    Y. Hadjar, P. F. Cohadon, C. G. Aminoff, M. Pinard and A. Heidmann, EPL (Europhysics Lett.) 47, 545 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    Q. P. Unterreithmeier, E. M. Weig and J. P. Kotthaus, Nature 458, 1001 (2009).ADSCrossRefGoogle Scholar
  20. [20]
    S. C. Jun, X. M. H. Huang, M. Manolidis, C. A. Zorman, M. Mehregany and J. Hone, Nanotechnology 17, 1506 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    T. Faust, P. Krenn, S. Manus, J. P. Kotthaus and E. M. Weig, Nat. Commun. 3, 728 (2012).ADSCrossRefGoogle Scholar
  22. [22]
    D. H. Kim, E. J. Lee, M. R. Cho, C. S. Kim, Y. D. Park and T. Kouh, Appl. Phys. Express 5, 75201 (2012).CrossRefGoogle Scholar
  23. [23]
    Q. P. Unterreithmeier, T. Faust, S. Manus and J. P. Kotthaus, Nano Lett. 10, 887 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    T. Briant, P-F. Cohadon, A. Heidmann and M. Pinard, Phys. Rev. A 68, 33823 (2003).ADSCrossRefGoogle Scholar
  25. [25]
    Z. Wang, J. Lee and P. X-L. Feng, Nat. Commun. 5, 5158 (2014).ADSCrossRefGoogle Scholar
  26. [26]
    A. Bokaian, J. Sound Vib. 142, 481 (1990).ADSCrossRefGoogle Scholar
  27. [27]
    A. Suhel, B. D. Hauer, T. S. Biswas, K. S. D. Beach and J. P. Davis, Appl. Phys. Lett. 100, 173111 (2012).ADSCrossRefGoogle Scholar
  28. [28]
    D. J. Wilson, C. A. Regal, S. B. Papp and H. J. Kimble, Phys. Rev. Lett. 103, 207204 (2009).ADSCrossRefGoogle Scholar
  29. [29]
    S. Verbridge, H. Craighead and J. Parpia, Appl. Phys. Lett. 92, 013112 (2008).ADSCrossRefGoogle Scholar
  30. [30]
    M. Li, H. X. Tang and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007).ADSCrossRefGoogle Scholar
  31. [31]
    T. Ikehara, J. Lu, M. Konno, R. Maeda and T. Mihara, J. Micromechanics Microengineering 17, 2491 (2007).ADSCrossRefGoogle Scholar
  32. [32]
    F. D. Bannon, J. R. Clark and C. T. C. Nguyen, IEEE J. Solid-State Circuits 35, 512 (2000).ADSCrossRefGoogle Scholar
  33. [33]
    A. N. Cleland and M. L. Roukes, J. Appl. Phys. 92, 2758 (2002).ADSCrossRefGoogle Scholar
  34. [34]
    M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader and M. L. Roukes, Nat. Nanotechnol. 10, 339 (2015).ADSCrossRefGoogle Scholar
  35. [35]
    M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C. Bullard, E. Colinet, L. Duraffourg and M. L. Roukes, Nat. Nanotechnol. 7, 602 (2012).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • Sungwan Cho
    • 1
    • 2
    • 3
  • Sang Goon Kim
    • 2
    • 4
  • Kimin Hong
    • 4
  • Seung-Bo Shim
    • 2
    Email author
  • Myunglae Jo
    • 3
  • Sung Un Cho
    • 3
  • Yun Daniel Park
    • 3
    Email author
  1. 1.Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Korea Research Institute of Standards and ScienceDaejeonKorea
  3. 3.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  4. 4.Department of PhysicsChungnam National UniversityDaejeonKorea

Personalised recommendations