Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 10, pp 670–678 | Cite as

Optical and biological properties of plasma-treated Neurospora crassa spores as studied by absorption, circular dichroism, and Raman spectroscopy

  • Geon Joon LeeEmail author
  • Gyungsoon Park
  • Eun Ha Choi
Article
  • 79 Downloads

Abstract

We studied the effect of plasma treatment on the optical, structural and biological properties of Neurospora crassa (N. crassa) spores. An atmospheric-pressure plasma jet (APPJ) was used to generate reactive oxygen and nitrogen species in aqueous solution. The APPJ treatment of N. crassa spores in water significantly reduced the viability of spores. The reduction in the spore viability can be attributed to the reactive species from the plasma itself and those derived from the reaction of plasma radicals with aqueous solution. These structural modifications were contingent on the medium in which N. crassa spores were suspended; plasma treatment of N. crassa spores in PBS did not significantly affect the viability of spores as compared with N. crassa spores in water. Scanning electron microscopy images and circular dichroism spectra indicated that the spore cell wall was damaged by plasma treatment. The optical absorption spectrum of untreated N. crassa spores exhibited two resonance absorption bands at approximately λ1 ≈ 260 nm and λ2 ≈ 472 nm, originating from deoxyribonucleic acid (DNA) and β-carotene. The Raman spectrum of untreated N. crassa spores exhibited three main peaks at 1519, 1157 and 1006 cm −1, attributed to β-carotene inside the cell wall. The Raman spectra showed that the APPJ treatment of N. crassa spores in water caused degradation of β-carotene, affecting the viability of spores.

Keywords

Atmospheric-pressure plasma jet Reactive oxygen species Neurospora crassa β-carotene Raman spectroscopy Circular dichroism spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Dobrynin, G. Fridman, G. Friedman and A. Fridman, New J. Phys. 11, 115020 (2009).ADSGoogle Scholar
  2. [2]
    G. J. Lee, Y. W. Kwon, Y. H. Kim and E. H. Choi, Appl. Phys. Lett. 102, 021911 (2013).ADSGoogle Scholar
  3. [3]
    G. J. Lee, G. B. Sim, E. H. Choi, Y. W. Kwon, J. Y. Kim, S. Jang and S. H. Kim, J. Appl. Phys. 117, 023303 (2015).ADSGoogle Scholar
  4. [4]
    Y. Li, M. H. Kang, H. S. Uhm, G. J. Lee, E. H. Choi and I. Han, Sci. Rep. 7, 45781 (2017).ADSGoogle Scholar
  5. [5]
    N. K. Kaushik, N. Kaushik, E. H. Choi, Y. W. Kwon and G. J. Lee, Sci. Adv. Mater. 8, 436 (2016).Google Scholar
  6. [6]
    M. H. Kang, Y. J. Hong, P. Attri, G. B. Sim, G. J. Lee, K. Panngom, G. C. Kwon, E. H. Choi, H. S. Uhm and G. Park, Free Radical Bio. Med. 72, 191 (2014).Google Scholar
  7. [7]
    R. H. Davis and D. D. Perkins, Nature Rev. Genet. 3, 7 (2002).Google Scholar
  8. [8]
    H. V. Colot, G. Park, G. E. Turner, C. Ringelberg, C. M. Crew, L. Litvinkova, R. L. Weiss, K. A. Borkovich and J. C. Dunlap, Proc. Natl. Acad. Sci. USA 103, 10352 (2006).ADSGoogle Scholar
  9. [9]
    Q. Yang and K. A. Borkovich, Genetics 151, 107 (1999).Google Scholar
  10. [10]
    G. Park, Y. H. Ryu, Y. J. Hong, E. H. Choi and H. S. Uhm, Appl. Phys. Lett. 100, 063703 (2012).ADSGoogle Scholar
  11. [11]
    P. C. Hickey, D. J. Jacobson, N. D. Read and N. L. Glass, Fungal Genet. Biol. 37, 109 (2002).Google Scholar
  12. [12]
    E. C. D. Fabo, R. W. Harding and W. Shropshire, Plant Physiol. 57, 440 (1976).Google Scholar
  13. [13]
    H. Linden, M. Rodriguez-Franco and G. Macino, Mol. Gen. Genet. 254, 111 (1997).Google Scholar
  14. [14]
    M. Riquelme, R. W. Roberson, D. P. McDaniel and S. Bartnicki-Garcia, Fungal Genet. Biol. 37, 171 (2002).Google Scholar
  15. [15]
    Y. J. Hong, C. J. Nam, K. B. Song, C. S. Cho, H. S. Uhm, D. I. Choi and E. H. Choi, J. Inst. 7, C03046 (2012).Google Scholar
  16. [16]
    F. Bohm, J. H. Tinkler and T. G. Truscott, Nature Med. 1, 98 (1995).Google Scholar
  17. [17]
    N. I. Krinsky and K. J. Yeum, Biochem. Biophys. Res. Commun. 305, 745 (2003).Google Scholar
  18. [18]
    H. D. Martin, C. Ruck, M. Schmidt, S. Sell, S. Beutner, B. Mayer and R. Walsh, Pure Appl. Chem. 71, 2253 (1999).Google Scholar
  19. [19]
    K. Liu, C. Y. Wang, H. M. Hu, J. Z. Lei and L. Han, IEEE Trans. Plasma Sci. 44, 2729 (2016).ADSGoogle Scholar
  20. [20]
    M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian and L. H. Yahia, Int. J. Pharmac. 226, 75 (2001).Google Scholar
  21. [21]
    S. J. Kim, T. H. Chung, S. H. Bae and S. H. Leem, Plasma Process. Polym. 6, 676 (2009).Google Scholar
  22. [22]
    L. Rimai, M. E. Heyde and D. Gill, J. Am. Chem. Soc. 95, 4493 (1973).Google Scholar
  23. [23]
    A. Omerzu, D. Mihailovic, B. Anzelak and I. Turel, Phys. Rev. B 75, 121103 (2007).ADSGoogle Scholar
  24. [24]
    H. Deng, V. A. Bloomfield, J. M. Benevides and G. J. Thomas Jr., Biopolymers 50, 656 (1999).Google Scholar
  25. [25]
    J. A. Glasel, BioTechniques 18, 63 (1995).Google Scholar
  26. [26]
    S. M. Bowman and S. J. Free, Bioassays 28, 799 (2006).Google Scholar
  27. [27]
    S. F. Parker, S. M. Tavender, N. M. Dixon, H. Herman, K. P. J. Williams and W. F. Maddams, Appl. Spectrosc. 53, 86 (1999).ADSGoogle Scholar
  28. [28]
    W. Barnard and D. de Waal, J. Raman Spectrosc. 37, 342 (2006).ADSGoogle Scholar
  29. [29]
    V. E. de Oliveira, H. V. Castro, H. G. M. Edwards and L. F. C. de Oliveira, J. Raman Spectrosc. 41, 642 (2010).ADSGoogle Scholar
  30. [30]
    J. Y. Kim, I. H. Lee, D. Kim, S. H. Kim, Y. W. Kwon, G. H. Han, G. Cho, E. H. Choi and G. J. Lee, RSC Advances 6, 30699 (2016).Google Scholar
  31. [31]
    M. Giorgio, M. Trinei, E. Migliaccio and P. G. Pelicci, Nat. Rev. Mol. Cell Biol. 8, 722 (2007).Google Scholar
  32. [32]
    S. B. Farr and T. Kogoma, Microbiol. Rev. 55, 561 (1991).Google Scholar
  33. [33]
    A. D. N. J. de Grey, DNA Cell Biol. 21, 251 (2002).Google Scholar
  34. [34]
    D. Dobrynin, G. Fridman, A. Fridman and A. Starikovskiy, New J. Phys. 13, 103033 (2011).ADSGoogle Scholar
  35. [35]
    B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, J. Phys. Chem. Ref. Data 14, 1041 (1985).ADSGoogle Scholar
  36. [36]
    J. Waskoenig, K. Niemi, N. Knake, L. M. Graham, S. Reuter, V. Schulz-von der Gathen and T. Gans, Plasma Sources Sci. Technol. 19, 045018 (2010).ADSGoogle Scholar
  37. [37]
    L. Qian, J. Shen, Y. Chuai and J. Cai, Int. J. Biol. Sci. 9, 887 (2013).Google Scholar
  38. [38]
    H. S. Uhm, Phys. Plasmas 22, 123506 (2015).ADSGoogle Scholar
  39. [39]
    H. S. Uhm, Y. H. Na, C. B. Lee, E. H. Choi and G. Cho, Curr. Appl. Phys. 14, S162 (2014).Google Scholar
  40. [40]
    N. Bibinov, N. Knake, H. Bahre, P. Awakowicz and V. Schulz-von der Gathen, J. Phys. D-Appl. Phys. 44, 345204 (2011).Google Scholar
  41. [41]
    X. L. Deng, A. Yu. Nikiforov, P. Vanraes and C. Leys, J. Appl. Phys. 113, 023305 (2013).ADSGoogle Scholar
  42. [42]
    P Lukes, E Dolezalova, I Sisrova and M Clupek, Plasma Sources Sci. Technol. 23, 015019 (2014).ADSGoogle Scholar
  43. [43]
    C. A. J. van Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg and P. J. Bruggeman, J. Phys. D: Appl. Phys. 46, 175203 (2013).ADSGoogle Scholar
  44. [44]
    L. J. Ignarro, J. M. Fukuto, J. M. Griscavage, N. E. Rogers and R. E. Byrns, Proc. Natl. Acad. Sci. USA 90, 8103 (1993).ADSGoogle Scholar
  45. [45]
    M. Pires, M. J. Rossi and D. S. Ross, Int. J. Chem. Kinet. 26, 1207 (1994).Google Scholar
  46. [46]
    D. Xu, D. Liu, B. Wang, C. Chen, Z. Chen, D. Li, Y. Yang, H. Chen and M. G. Kong, Plos One 10, e0128205 (2015).Google Scholar
  47. [47]
    S. J. Neill, R. Desikan and J. T. Hancock, New Phytologist 159, 11 (2003).Google Scholar
  48. [48]
    M. L. Circu and T. Y. Aw, Free Radic. Biol. Med. 48, 749 (2010).Google Scholar
  49. [49]
    K. Panngom, S. H. Lee, D. H. Park, G. B. Sim, Y. H. Kim, H. S. Uhm, G. Park and E. H. Choi, Plos One 9, e99300 (2014).ADSGoogle Scholar
  50. [50]
    R. Yamauchi, N. Miyake, H. Inoue and K. Kato, J. Agric. Food Chem. 41, 708 (1993).Google Scholar
  51. [51]
    S. P. Stratton, W. H. Schaefer and D. C. Liebler, Chem. Res. Toxicol. 6, 542 (1993).Google Scholar
  52. [52]
    T. A. Kennedy and D. C. Liebler, Chem. Res. Toxicol. 4, 290 (1991).Google Scholar
  53. [53]
    S. Isoe, S. B. Hyeon and T. Sakan, Tetrahedron Lett. 10, 279 (1969).Google Scholar
  54. [54]
    K. C. Gray, D. S. Palacios, I. Dailey, M. M. Endo, B. E. Uno, B. C. Wilcock and M. D. Burke, Proc. Natl. Acad. Sci. USA 109, 2234 (2012).ADSGoogle Scholar
  55. [55]
    Y. H Ryu, Y. H Kim, J. Y. Lee, G. B. Shim, H. S Uhm, G. Park and E. H. Choi, Plos One 8, e66231 (2013).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of Electrical and Biological Physics /Plasma Bioscience Research CenterKwangwoon UniversitySeoulKorea

Personalised recommendations