Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 10, pp 657–664 | Cite as

Resonance fluorescence of ladder- and triangular-type three-level systems: Continuous coherent photon generation

  • Kwang Jun AhnEmail author
Article

Abstract

We theoretically investigate resonance fluorescence of a ladder- and a triangular-type three-level atomic system in the full quantization regime. By solving Heisenberg’s quantum kinetic equations of motion of an electron interacting with photons and two coherent laser fields, we obtain the firstorder electric field correlation function, which corresponds to photoluminescence spectrum. When the single electrons in both systems are resonantly excited by two strong cw-laser fields, in contrast to the ladder-type atomic systems emitting mainly incoherent photons, the triangular-type system shows that continuous coherent photons can be selectively generated from three optical transitions by trapping electronic population inversions and manipulated by changing the transition rates.

Keywords

Three-level system Resonance fluorescence Coherent photon generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. F. Walls and G. J. Milburn, Quantum optics, Springer study edition (Springer, Berlin, 1995).Google Scholar
  2. [2]
    G. S. Agarwal, Quantum optics (Cambridge Univ. Press, Cambridge, 2013).zbMATHGoogle Scholar
  3. [3]
    M. Sargent and P. Horwitz, Phys. Rev. A 13, 1962 (1976).ADSCrossRefGoogle Scholar
  4. [4]
    J. Förstner, C. Weber, J. Danckwerts and A. Knorr, Phys. Rev. Lett. 91, 127401 (2003).ADSCrossRefGoogle Scholar
  5. [5]
    U. Hohenester and G. Stadler, Phys. Rev. Lett. 92, 196801 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    K. J. Ahn, J. Förstner and A. Knorr, Phys. Rev. B 71, 153309 (2005).ADSCrossRefGoogle Scholar
  7. [7]
    M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 2002).Google Scholar
  8. [8]
    J. McKeever, A. Boca, A. D. Boozer, J. R. Buck and H. J. Kimble, Nature 425, 268 (2003).ADSCrossRefGoogle Scholar
  9. [9]
    P. Tighineanu, R. S. Daveau, T. B. Lehmann, H. E. Beere, D. A. Ritchie, P. Lodahl and S. Stobbe, Phys. Rev. Lett. 116, 163604 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    L. M. Narducci, M. O. Scully, G. L. Oppo, P. Ru and J. R. Tredicce, Phys. Rev. A 42, 1630 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru and G. L. Oppo, Phys. Rev. A 43, 3748 (1991).ADSCrossRefGoogle Scholar
  12. [12]
    D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).ADSCrossRefGoogle Scholar
  13. [13]
    D. J. Gauthier, Y. Zhu and T. W. Mossberg, Phys. Rev. Lett. 66, 2460 (1991).ADSCrossRefGoogle Scholar
  14. [14]
    K. K. Meduri, G. A. Wilson, P. B. Sellin and T. W. Mossberg, Phys. Rev. Lett. 71, 4311 (1993).ADSCrossRefGoogle Scholar
  15. [15]
    S-C. Tian, C-L. Wang, C-Z. Tong, L-J. Wang, H-H. Wang, X-B. Yang, Z-H. Kang and J-Y. Gao, Opt. Express 20, 23559 (2012).ADSCrossRefGoogle Scholar
  16. [16]
    P. Zhou and S. Swain, Phys. Rev. A 56, 3011 (1997).ADSCrossRefGoogle Scholar
  17. [17]
    X. Qing, Z. Hong-di, M. Gui-ju and Y. Jian-Wu, J. Phys. B: At., Mol. Opt. Phys. 40, 3197 (2007).ADSCrossRefGoogle Scholar
  18. [18]
    Y-X. Liu, J. Q. You, L. F. Wei, C. P. Sun and F. Nori, Phys. Rev. Lett. 95, 087001 (2005).ADSCrossRefGoogle Scholar
  19. [19]
    A. A. Rangelov, N. V. Vitanov and B. W. Shore, Phys. Rev. A 77, 033404 (2008).ADSCrossRefGoogle Scholar
  20. [20]
    N. Didier, Y. M. Blanter and F. W. J. Hekking, Phys. Rev. B 82, 214507 (2010).ADSCrossRefGoogle Scholar
  21. [21]
    J. Q. You and F. Nori, Nature 474, 589 (2011).ADSCrossRefGoogle Scholar
  22. [22]
    P. Král and M. Shapiro, Phys. Rev. Lett. 87, 183002 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    K. J. Ahn, F. Milde and A. Knorr, Phys. Rev. Lett. 98, 027401 (2007).ADSCrossRefGoogle Scholar
  24. [24]
    Y. Mu and C. M. Savage, Phys. Rev. A 46, 5944 (1992).ADSCrossRefGoogle Scholar
  25. [25]
    O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura and J. S. Tsai, Nature 449, 588 (2007).ADSCrossRefGoogle Scholar
  26. [26]
    R. M. Whitley and C. R. Stroud, Phys. Rev. A 14, 1498 (1976).ADSCrossRefGoogle Scholar
  27. [27]
    M. Kira and S. W. Koch, Phys. Rev. A 78, 022102 (2008).ADSCrossRefGoogle Scholar
  28. [28]
    H. Huang, S-Y. Zhu, M. S. Zubairy and M. O. Scully, Phys. Rev. A 53, 1834 (1996).ADSCrossRefGoogle Scholar
  29. [29]
    H-R. Noh and H. S. Moon, Phys. Rev. A 85, 033817 (2012).ADSCrossRefGoogle Scholar
  30. [30]
    G. Shchedrin, C. O’Brien, Y. Rostovtsev and M. O. Scully, Phys. Rev. A 92, 063815 (2015).ADSCrossRefGoogle Scholar
  31. [31]
    L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis and R. Grousson, Phys. Rev. Lett. 111, 026403 (2013).ADSCrossRefGoogle Scholar
  32. [32]
    P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, Berlin, 1999).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of Energy Systems Research and Department of PhysicsAjou UniversitySuwonKorea

Personalised recommendations