A new QMD code for heavy-ion collisions
- 73 Downloads
- 1 Citations
Abstract
We develop a new quantum molecular dynamics (QMD) type nuclear transport code to simulate heavy-ion collisions for RAON, a new accelerator complex under construction in Korea. At RAON, the rare isotope beams with energies from a few MeV/n to a few hundreds MeV/n will be utilized. QMD is one of the widely used theoretical methods and is useful for both theoretical and experimental purposes. We describe our QMD model with the numerical realization. The validity of the code is tested by comparing our simulation results with experimental data and also results from other transport codes in 197Au+197Au collisions at Elab = 90 - 120 MeV/n. Finally, we present a brief discussion on applicability and outlook of our code.
Keywords
Transport model Quantum Molecular Dynamics Heavy-ion collisionPreview
Unable to display preview. Download preview PDF.
References
- [1]S. Jeong, New Physics: Sae Mulli 66, 1458 (2016).Google Scholar
- [2]G. F. Bertsch, H. Kruse and S. Das Gupta, Phys. Rev. C 29, 673 (1984).ADSCrossRefGoogle Scholar
- [3]H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall and H. Stöcker, Phys. Rev. C 31, 1770 (1985).ADSCrossRefGoogle Scholar
- [4]J. Aichelin, Phys. Rev. C 33, 537 (1986).ADSCrossRefGoogle Scholar
- [5]B. A. Li, Phys. Rev. Lett. 85, 4221 (2000).ADSCrossRefGoogle Scholar
- [6]L.W. Chen, V. Greco, C. M. Ko and B-A. Li, Phys. Rev. Lett. 90, 162701 (2003).ADSCrossRefGoogle Scholar
- [7]B. A. Li, C. M. Ko and Z. Ren, Phys. Rev. Lett 78, 1644 (1997).ADSCrossRefGoogle Scholar
- [8]L. W. Chen, C. M. Ko and B. A. Li, Phys. Rev. C 68, 017601 (2003).ADSCrossRefGoogle Scholar
- [9]B. A. Li, Phys. Rev. Lett. 88, 192701 (2002).ADSCrossRefGoogle Scholar
- [10]Q. Li, Z. Li, E. Zhao and R. K. Gupta 71, 054907 (2005).Google Scholar
- [11]G. Ferini, M. Colonna, T. Gaitanos and M. Di Toro, Nucl. Phys. A 762, 147 (2005).ADSCrossRefGoogle Scholar
- [12]C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R. Michaels, A. Ono, J. Piekarewicz, M. B. Tsang and H. H. Wolter, J. Phys. G: Nucl. Part. Phys. 41, 0933001 (2014).CrossRefGoogle Scholar
- [13]J. Xu et al., Phys. Rev. C 93, 044609 (2016).ADSCrossRefGoogle Scholar
- [14]H. Feldmeier, Nucl. Phys. A 515, 147 (1990).ADSCrossRefGoogle Scholar
- [15]A. Ono, H. Horiuchi, T. Maruyama and A. Ohnishi, Prog. Theor. Phys. 87, 1185 (1992).ADSCrossRefGoogle Scholar
- [16]A. Ono, H. Horiuchi, T. Maruyama and A. Ohnishi, Phys. Rev. C 47, 2652 (1993).ADSCrossRefGoogle Scholar
- [17]M. Papa, T. Maruyama and A. Bonasera, Phys. Rev. C 64, 024612 (2001).ADSCrossRefGoogle Scholar
- [18]N. Wang, Z. Li and X. Wu, Phys. Rev. C 65, 064608 (2002).ADSCrossRefGoogle Scholar
- [19]J. Aichelin, Phys. Rept. 202, 233 (1991).ADSCrossRefGoogle Scholar
- [20]G. Q. Li and R. Machleidt, Phys. Rev. C 48, 1702 (1993).ADSCrossRefGoogle Scholar
- [21]G. Q. Li and R. Machleidt, Phys. Rev. C 49, 566 (1994).ADSCrossRefGoogle Scholar
- [22]P. Moller, J. R. Nix, W. D. Myers and W. J. Swiatecki, Atomic Data and Nuclear Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
- [23]G. F. Bertsch and S. Das Gupta, Phys. Rept. 160, 189 (1988).ADSCrossRefGoogle Scholar
- [24]R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald and L. G. Moretto, Nucl. Phys. A 483, 371 (1988).ADSCrossRefGoogle Scholar
- [25]M. Mocko et al., Phys. Rev. C 74, 054612 (2006).ADSCrossRefGoogle Scholar
- [26]M. Mocko, M. B. Tsang, D. Lacroix, A. Ono, P. Danielewicz, W. G. Lynch and R. J. Charity, Phys. Rev. C 78, 024612 (2008).ADSCrossRefGoogle Scholar
- [27]W. Reisdorf et al., Nucl. Phys. A 876, 1 (2012).ADSCrossRefGoogle Scholar
- [28]A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).ADSCrossRefGoogle Scholar