Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 9, pp 538–542 | Cite as

High-resolution X-ray phase-contrast imaging with a grating interferometer

  • Seung Wook LeeEmail author
  • Youngju Kim
  • Seho Lee
  • Ohsung Oh
  • Yan Xi
  • Qingsong Yang
  • Wenxiang Cong
  • Ge Wang
Article

Abstract

High-resolution X-ray imaging is a promising technique for studies of biological structures on a micron-scale. Conventional X-ray imaging is limited by its poor soft tissue contrast. X-ray phasecontrast imaging has the potential to significantly improve the biological contrast in terms of the refractive index variation. In this paper, we analyze an X-ray grating interferometer we set up with a micro-focus X-ray source and a flat panel detector. The system utilizes the geometric magnification for high-resolution imaging. After our initial calibration, the visibility function reaches about 10%. The experiments demonstrate that the spatial resolution of the system is about 10 μm, which helps reveal features invisible with X-ray attenuation-based imaging.

Keywords

X-ray phase-contrast imaging Dark-field imaging Interferometer Biological imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Momose, T. Takeda, Y. Itai and K. Hirano, Nat. Med. 2, 473 (1996).CrossRefGoogle Scholar
  2. [2]
    A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai et al., Jpn. J. of Appl. Phys. 42, L866 (2003).ADSCrossRefGoogle Scholar
  3. [3]
    C. David, B. Nohammer, H. H. Solak and E. Ziegler, Appl. Phys. Lett. 81, 3287 (2002).ADSCrossRefGoogle Scholar
  4. [4]
    F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. 2, 258 (2006).CrossRefGoogle Scholar
  5. [5]
    F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry et al., Nat Mater 7, 134 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    P. B. Noel, J. Herzen, A. A. Fingerle, M. Willner, M. K. Stockmar et al., Z. Med. Phys. 23, 204 (2013).CrossRefGoogle Scholar
  7. [7]
    T. Takeda, A. Momose, J. Wu, Q. W. Yu, T. Zeniya et al., Circulation 105, 1708 (2002).CrossRefGoogle Scholar
  8. [8]
    G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann et al., J. R. Soc. Interface 7, 1665 (2010).CrossRefGoogle Scholar
  9. [9]
    S. Lang, I. Zanette, M. Dominietto, M. Langer, A. Rack et al., J. Appl. Phys. 116, 154903 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer et al., Appl. Phys. Lett. 90, 224101 (2007).ADSCrossRefGoogle Scholar
  11. [11]
    S. W. Lee, K-Y. Kim, O. Y. Kwon, N. Kardjilov, M. Dawson et al., Appl. Phys. Express 3, 106602 (2010).ADSCrossRefGoogle Scholar
  12. [12]
    I. Manke, N. Kardjilov, R. Schafer, A. Hilger, M. Strobl et al., Nat. Commun. 1, 125 (2010).CrossRefGoogle Scholar
  13. [13]
    H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita et al., IEEE T. on Med. Imaging 11, 34 (1992).CrossRefGoogle Scholar
  14. [14]
    T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova et al., J. Appl. Phys. 106, 054703 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • Seung Wook Lee
    • 1
    Email author
  • Youngju Kim
    • 1
  • Seho Lee
    • 1
  • Ohsung Oh
    • 1
  • Yan Xi
    • 2
  • Qingsong Yang
    • 2
  • Wenxiang Cong
    • 2
  • Ge Wang
    • 2
  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea
  2. 2.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations