Journal of the Korean Physical Society

, Volume 71, Issue 6, pp 335–339 | Cite as

Effect of additives on the properties of printed ITO sensors

  • Jieun Koo
  • Seok-hwan Lee
  • Sung-min Cho
  • Jiho Chang
Article

Abstract

The effects of additives on the methane gas sensing performance of printed indium tin oxide (ITO) sensor have been investigated. Room temperature gas sensing of ITO sensor has been achieved under the methane flow of 100 ppm. To improve the sensor performance, Ag and carbon nanotube (CNT) were chosen as an additive, and simply incorporated into the printing paste in the form of mixture. Increase of sensitivity (40-times) was dominant for the ITO+Ag sensor, while improved response performance (50%) was achieved from the ITO+CNT sensor. The most advanced performance has achieved from the ITO+(Ag, CNT) sensor. Ag and CNT co-incorporation results in 652-times large sensitivity and 88% fast response time in compare to the pure ITO sensor under the same test conditions.

Keywords

Gas sensor Methane ITO Ag CNT Sensitivity Response Additive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Gurlo et al., Sens. Actuators B 47, 92 (1988).CrossRefGoogle Scholar
  2. [2]
    A. Galdikas, Z. Martūnas and A. Šetkus, Sens. Actuators B 7, 633 (1992).CrossRefGoogle Scholar
  3. [3]
    W. Y. Chung et al., Sens. Actuators B 46, 139 (1998).CrossRefGoogle Scholar
  4. [4]
    H. Mbarek, M. Saadoun and B. Bessaïs, Mater. Sci. Eng. C 26, 500 (2006).CrossRefGoogle Scholar
  5. [5]
    V. Kamble and A. Umarji, AIP advances 5, 037138 (2015)ADSCrossRefGoogle Scholar
  6. [6]
    Z. Gaburro et al. Appl. Phys. Lett. 85, 555 (2004)ADSCrossRefGoogle Scholar
  7. [7]
    Z. Gaburro, C. J. Oton, L. Pavesi and L. Pancheri, Appl. Phys. Lett. 84, 4388 (2004).ADSCrossRefGoogle Scholar
  8. [8]
    A. Salehiand and M. Gholizade, Sens. Actuators B 89, 173 (2003).CrossRefGoogle Scholar
  9. [9]
    A. Cabot et al., Sens. Actuators B 79, 98 (2001).CrossRefGoogle Scholar
  10. [10]
    L. Popova et al., Sens. Actuators B 100, 352 (2004).CrossRefGoogle Scholar
  11. [11]
    W. G. Haines and R. H. Sube, J. Appl. Phys. 49, 304 (1978).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Yang, Z. H. Xu, Z. Pan and X. Li, Adv. Mater. 24, 881 (2012).CrossRefGoogle Scholar
  13. [13]
    J. E. Koo et al., J. Nanosci. Nanotech. 15, 669 (2015).CrossRefGoogle Scholar
  14. [14]
    G. Xiao, Y. Tao, J. Lu and Z. Zhan, Thin Solid Films 518, 2822 (2010).ADSCrossRefGoogle Scholar
  15. [15]
    S-H. Lee, C-C. Teng, C-C. Ma and I. Wang, J. Colloid and Inter. Sci. 364, 1 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    Z. K. Horastania, S. M. Sayedia and M. H. Sheikhi, Sen. Actuators B 202, 461 (2014).CrossRefGoogle Scholar
  17. [17]
    K. Chatterjee et al., Materials Chem. Phys. 81, 33 (2003).CrossRefGoogle Scholar
  18. [18]
    S. Majumdar, Appl. Surf. Sci. 37, 6290 (2016)Google Scholar
  19. [19]
    R. K. Joshi and F. E. Kruis, Appl. Phys. Lett. 89, 153116 (2006).ADSCrossRefGoogle Scholar
  20. [20]
    Y. X. Liang, Y. J. Chen and T. H. Wang, Appl. Phys. Lett. 85, 666 (2004).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • Jieun Koo
    • 1
    • 2
  • Seok-hwan Lee
    • 3
  • Sung-min Cho
    • 3
  • Jiho Chang
    • 1
    • 3
  1. 1.Department of Electronic Material EngineeringKorea Maritime and Ocean UniversityBusanKorea
  2. 2.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)IbarakJapan
  3. 3.Department of Convergence Study on the Ocean Science and TechnologyKorea Maritime and Ocean UniversityBusanKorea

Personalised recommendations