Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 4, pp 222–230 | Cite as

Calculation of precise firing statistics in a neural network model

  • Myoung Won ChoEmail author
Article
  • 25 Downloads

Abstract

A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.

Keywords

Neural network model Neural network dynamics Computational methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Gerstner, R. Kempter, J. L. van Hemmen and H. Wagner, Nature 383, 76 (1996).ADSCrossRefGoogle Scholar
  2. [2]
    M. W. Cho and M. W. Choi, Neural Networks 49, 51 (2014).CrossRefGoogle Scholar
  3. [3]
    H. Markram, J. Lubke, M. Frotscher and B. Sakamann, Science 275, 213 (1997).CrossRefGoogle Scholar
  4. [4]
    L. Zhang, H. Tao, C. Holt, W. Harris and M-M. Poo, Nature 92, 37 (1998).ADSGoogle Scholar
  5. [5]
    G-Q. Bi and M-M. Poo, J. Neurosci. 18, 10464 (1998).Google Scholar
  6. [6]
    L. F. Abbott and S. B. Nelson, Nature Neurosci. 3, 1178 (2000).CrossRefGoogle Scholar
  7. [7]
    P. D. Roberts and C. C. Bell, Biol. Cybern. 87, 392 (2002).CrossRefGoogle Scholar
  8. [8]
    W. Gerstner and W. M. Kistler, Spiking Neuron Models (Cambridge Universe Press, 2002).CrossRefzbMATHGoogle Scholar
  9. [9]
    P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT Press, 2001).zbMATHGoogle Scholar
  10. [10]
    D. H. Ackley, G. Hinton and T. Sejnowski, Cognitive Science 9, 147 (1985).CrossRefGoogle Scholar
  11. [11]
    M. W. Cho and M. W. Choi, Europhys. Lett. 95, 58005 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    M. W. Cho and M. W. Choi, Europhysics. Lett. 115, 38001 (2016).ADSCrossRefGoogle Scholar
  13. [13]
    L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914).Google Scholar
  14. [14]
    M. W. Cho, New Physics: Sae Mulli (To be published).Google Scholar
  15. [15]
    H. Kleinert, Gauge fields in condensed matter (World Scientific, 1989).CrossRefzbMATHGoogle Scholar
  16. [16]
    H. Kleinert and V. Schulte-Fronhlinde, Critical properties of ϕ4 theories (World Scientific, 2001).CrossRefGoogle Scholar
  17. [17]
    D. Hansel, G. Mato and C. Meunier, Europhysics. Lett. 23, 367 (1993).ADSCrossRefGoogle Scholar
  18. [18]
    G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).ADSCrossRefGoogle Scholar
  19. [19]
    H. Risken, Fokker-Plank Equation: Method of Solution and Applications (Springer-Verlag, New York, 1989).CrossRefzbMATHGoogle Scholar
  20. [20]
    M. W. Cho, New Physics: Sae Mulli 65, 456 (2015).Google Scholar
  21. [21]
    M. W. Cho and M. Y. Choi, Neural Networks 31, 46 (2012).CrossRefGoogle Scholar
  22. [22]
    M. W. Cho, J. Korean Phys. Soc. 64, 1213 (2014).ADSCrossRefGoogle Scholar
  23. [23]
    M. W. Cho, J. Korean Phys. Soc. 69, 107 (2016).ADSCrossRefGoogle Scholar
  24. [24]
    J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of Global Medical ScienceSungshin Women’s UniversitySeoulKorea

Personalised recommendations