Journal of the Korean Physical Society

, Volume 71, Issue 4, pp 191–195 | Cite as

Properties of the t1t2 one-dimensional Hubbard model at finite temperature

Article

Abstract

The one-dimensional t1t2 half-filled Hubbard model is considered at finite temperatures T within a dynamical cluster approximation (DCA) with Nc = 24 in combination with a semiclassical approximation (SCA) impurity solver. The SCA approach accounts for long-range spatial fluctuations, where exact numerical impurity solvers can not capture due to computational expense, even though dynamical fluctuations are freezing. Therefore, it can consider both frequency- and momentum-resolved physical properties beyond the DCA with small cluster in combination with exact impurity solvers. By the computation of the static spin-spin correlation, the density of states, and the double occupancy, we examine the description of the frustrated one-dimensional systems at finite T within given approximations. We confirm not only the interaction-driven metal-insulator transition in the regions of t2/t1 > 0.5, but also the commensurate-incommensurate transition by tunning t2/t1 in the strong interaction region. We also observe finite T-driven metal-insulator transition.

Keywords

Hubbard model Strong correlation Dynamical cluster approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. W. Anderson, Science 235, 1196 (1987).ADSCrossRefGoogle Scholar
  2. [2]
    M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).ADSCrossRefGoogle Scholar
  3. [3]
    A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).ADSCrossRefGoogle Scholar
  4. [4]
    T. Maier, M. Jarrell, T. Pruschke and M. H. Hettler, Rev Mod. Phys. 77, 1027 (2005).ADSCrossRefGoogle Scholar
  5. [5]
    H. Lee, Y.-Z. Zhang, H. Lee, Y. Kwon, H.O. Jeschke and R. Valenti, Phys. Rev. B 88, 165126 (2013).ADSCrossRefGoogle Scholar
  6. [6]
    S. Okamoto, A. Fuhrmann, A. Comanac and A. J. Millis, Phys. Rev. B 71, 235113 (2005).ADSCrossRefGoogle Scholar
  7. [7]
    S. Kim and H. Lee, J. Korean Phy. Soc. 70, 1049 (2017).ADSCrossRefGoogle Scholar
  8. [8]
    N. Macris and J. L. Lebowitz, J. Math. Phys. 38, 2084 (1997).ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).ADSCrossRefGoogle Scholar
  10. [10]
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  11. [11]
    M. Fabrizio, Phys. Rev. B 54, 10054 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    R. Arita, K. Kuroki, H. Aoki and M. Fabrizio, Phys. Rev. B 57, 10324 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    G. I. Japaridze, R. M. Noack, D. Baeriswyl and L. Tincani, Phys. Rev. B 76, 115118 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    S. Daul and R. M. Noack, Phys. Rev. B 61, 1646 (2000).ADSCrossRefGoogle Scholar
  15. [15]
    L. F. Tocchio, F. Becca and C. Gros, Phys. Rev. B 81, 205109 (2010).ADSCrossRefGoogle Scholar
  16. [16]
    E. Gull, P. Werner, X. Wang, M. Troyer and A. J. Millis, Europhysics Letters 84, 37009 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    T. Ohashi, N. Kawakami and H. Tsunetsugu, Phys. Rev. Lett. 97, 066401 (2006).ADSCrossRefGoogle Scholar
  18. [18]
    T. Ohashi, T. Momoi, H. Tsunetsugu and N. Kawakami, Phys. Rev. Lett. 100, 076402 (2008).ADSCrossRefGoogle Scholar
  19. [19]
    H. Lee, G. Li and H. Monien, Phys. Rev. B 78, 205117 (2008).ADSCrossRefGoogle Scholar
  20. [20]
    M. Udagawa and Y. Motome, J. Phys.: Conf. Ser. 145, 012013 (2009).Google Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of General StudiesKangwon National UniversitySamcheokKorea

Personalised recommendations