Advertisement

Journal of the Korean Physical Society

, Volume 70, Issue 6, pp 591–597 | Cite as

Thermoelectric properties of partially double-filled (Pr1−z Yb z ) y Fe4−x Co x Sb12 skutterudites

  • Dong-Kil Shin
  • Il-Ho Kim
Article

Abstract

(Pr1−z Yb z ) y Fe4−x Co x Sb12 (z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by using encapsulated melting, annealing, and hot pressing, and the effects of Pr/Yb partial double filling and Co charge compensation on the microstructure, charge transport and thermoelectric properties were investigated. All specimens were transformed to the skutterudite phase by using melting and annealing processes, and a few secondary phases such as marcasite FeSb2 formed together with the skutterudite phase. However, with Co substitution, the intensities of the FeSb2 peaks decreased, and proportion of the FeSb2 phase decreased with increasing Co content. Pr and Yb were confirmed to be partially double filled in the voids, and Co was substituted at Fe sites because for the Pr/Yb and Fe/Co substitution, the lattice constant changed with the filling ratio. All specimens exhibited degenerate semiconductor characteristics and p-type conduction at temperatures from 323 K to 823 K, and the charge transport properties showed a slight difference with changing filling fraction due to the difference in the valences of Pr and Yb. With increasing Pr and Co contents, the carrier concentration decreased. Consequently, the Seebeck coefficient increased, and the electrical conductivity decreased. The electronic thermal conductivity dominated the thermal conductivity, and the lattice thermal conductivity was decreased because the phonon scattering was enhanced by the Pr and Yb partial double-filling. Although the lattice thermal conductivity of partially double-filled specimens was lower than that of completely double-filled specimens, the partially double-filled specimens showed higher thermal conductivity because of the increase in electronic thermal conductivity caused by the high carrier concentration. The maximum dimensionless figure of merit, ZT = 0.85, was obtained at 723 K for (Pr0.75Yb0.25)0.8Fe3CoSb12.

Keywords

Thermoelectric Skutterudite Double filling Charge compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
  2. [2]
    G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).ADSCrossRefGoogle Scholar
  3. [3]
    Y. Q. Chen, Y. Kawamura, J. Hayashi and C. Sekine, Jpn. J. Appl. Phys. 55, 04EJ02 (2016).CrossRefGoogle Scholar
  4. [4]
    G. D. Li, Q. An et al., Acta Mater. 103, 775 (2016).CrossRefGoogle Scholar
  5. [5]
    T. Caillat, A. Borshchevsky and J. P. Fleurial, J. Appl. Phys. 80, 4442 (1996).ADSCrossRefGoogle Scholar
  6. [6]
    B. C. Sales, D. Mandrus, B. C. Chakoumakos et al., Phys. Rev. B 56, 15081 (1997).ADSCrossRefGoogle Scholar
  7. [7]
    G. A. Slack, Handbook of Thermoelectrics, edited by D. M. Rowe (CRC, Boca Raton, FL, 1995), Chap. 34.Google Scholar
  8. [8]
    B. C. Sales, D. Mandrus and R. K. Williams, Science 272, 1325 (1996).ADSCrossRefGoogle Scholar
  9. [9]
    G. S. Nolas, G. A. Slack, D. T. Morelli et al., J. Appl. Phys. 79, 4002 (1996).ADSCrossRefGoogle Scholar
  10. [10]
    G. S. Nolas, J. L. Cohn and G. A. Slack, Phys. Rev. B 58, 164 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    L. D. Chen, T. Kawahara, X. F. Tang et al., J. Appl. Phys. 90, 1864 (2001).ADSCrossRefGoogle Scholar
  12. [12]
    W. Jeitschko and D. Braun, Acta Cryst. B 33, 3401 (1977).CrossRefGoogle Scholar
  13. [13]
    X. Shi, J. R. Salvador, J. Yang and H. Wang, J. Electron. Mater. 38, 930 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    X. Shi, H. Kong, C. P. Li et al., Appl. Phys. Lett. 92, 182101 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    J. S. Dyck, W. Chen, C. Uher et al., J. Appl. Phys. 91, 3698 (2002).ADSCrossRefGoogle Scholar
  16. [16]
    G. Rogl, A. Grytsiv et al., Intermet. 18, 394 (2010).CrossRefGoogle Scholar
  17. [17]
    G. P. Meisner, D. T. Morelli, S. Hu, J. Yang and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).ADSCrossRefGoogle Scholar
  18. [18]
    J. Yang, W. Zhang, S. Q. Bai, Z. Mei and L. D. Chen, Appl. Phys. Lett. 90, 192111 (2007).ADSCrossRefGoogle Scholar
  19. [19]
    C. Uher, Thermoelectrics Handbook, edited by D. M. Rowe (CRC, Boca Raton, FL, 2006), Chap. 34.Google Scholar
  20. [20]
    S. Ballikaya, N. Uzar, S. Yildirim et al., J. Electron. Mater. 42, 1622 (2013).ADSCrossRefGoogle Scholar
  21. [21]
    X. Shi, J. O. Yang, J. R. Salvador et al., J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  22. [22]
    G. Rogl, A. Grytsiv et al., Acta Mater. 63, 30 (2014).CrossRefGoogle Scholar
  23. [23]
    R. H. Liu, J. O. Yang, X. H. Chen et al., Intermet. 19, 1747 (2011).CrossRefGoogle Scholar
  24. [24]
    L. Zhou, P. F. Qiu, C. Uher, X. Shi and L. D. Chen, Intermet. 32, 209 (2013).CrossRefGoogle Scholar
  25. [25]
    G. Rogl, D. Setman et al., Acta Mater. 60, 2146 (2012).CrossRefGoogle Scholar
  26. [26]
    D. K. Shin and I. H. Kim, J. Korean Phys. Soc. 67, 1208 (2015).ADSCrossRefGoogle Scholar
  27. [27]
    G. J. Tan, S. Y. Wang, Y. G. Yan et al., J. Electron. Mater. 41, 1147 (2012).ADSCrossRefGoogle Scholar
  28. [28]
    P. F. Qiu, J. Yang, R. H. Liu et al., J. Appl. Phys. 109, 063713 (2011).ADSCrossRefGoogle Scholar
  29. [29]
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl and M. Zehetbauer, Intermet. 18, 57 (2010).CrossRefGoogle Scholar
  30. [30]
    G. Rogl, A. Grytsiv et al., J. Alloys Compd. 537, 242 (2012).CrossRefGoogle Scholar
  31. [31]
    X. Meng, W. Cai et al., Acta Mater. 98, 405 (2015).CrossRefGoogle Scholar
  32. [32]
    Y. C. Lan, A. J. Minnich, G. Chen and Z. F. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  33. [33]
    C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 152Google Scholar
  34. [34]
    J. Y. Cho, Z. Ye, M. M. Tessema et al., ActaMater. 60, 2104 (2012).Google Scholar
  35. [35]
    Z. Chen, J. O. Yang, R. H. Liu et al., J. Electron. Mater. 42, 2492 (2013).ADSCrossRefGoogle Scholar
  36. [36]
    G. J. Tan, S. Y. Wang and X. F. Tang, J. Electron. Mater. 43, 1712 (2014).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations