Advertisement

Journal of the Korean Physical Society

, Volume 70, Issue 4, pp 339–347 | Cite as

Eigen solutions, Shannon entropy and fisher information under the Eckart Manning Rosen potential model

  • C. A. Onate
  • M. C. OnyeajuEmail author
  • A. N. Ikot
  • J. O. A. Idiodi
  • J. O. Ojonubah
Article

Abstract

We solved the Schrödinger equation with a certain approximation to the centrifugal term for an arbitrary angular momentum state with the Eckart Manning Rosen potential. The bound-state energy eigenvalues and the corresponding wave functions have been approximately obtained using the parametric Nikiforov Uvarov method. The solutions of the Schrödinger equation for the Eckart potential, Manning Rosen potential, and Hulthén potential have been obtained using a certain transformation. The concepts of the Shannon entropy and the Fisher information of a system under the Eckart Manning Rosen potential are investigated in detail. The behavior of the screening parameter and the quantum number n for Fisher information and the Shannon entropy are also investigated.

Keywords

Eigen solutions Wave equation Shannon entropy Fisher information theoretic quantities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

It is our pleasure for us to thank the kind referee for his many useful comments and suggestions, which greatly helped us in making improvements to this paper.

References

  1. [1]
    M. F. Manning and N. Rosen, Phys. Rev. 44, 953 (1933).Google Scholar
  2. [2]
    R. J. Le Roy and R. B. Bernstein, J. Chem. Phys. 52, 3869 (1970).ADSCrossRefGoogle Scholar
  3. [3]
    J. Cai, P. Cai, and A. Inomata, Phys Rev A 34, 4621 (1986).ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. M. Ikhdair, Phys. Scr. 83, 015010 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    Z. Min-Cang and A. Bo, Chin. Phys. Lett. 27, 110301 (2010).CrossRefGoogle Scholar
  6. [6]
    R. H. Hammed, J. Bosrah Research (Sciences) 38(1A), 51 (2012).Google Scholar
  7. [7]
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H. Rahimov, Can. J. Phys. 90, 633 (2012).CrossRefGoogle Scholar
  8. [8]
    B. J. Falaye, K. J. Oyewumi, T. T. Ibrahim, M. A. Punyasena and C. A. Onate, Can. J. Phys. 91, 98 (2013).CrossRefGoogle Scholar
  9. [9]
    S. Asgarifar and H. Goudarzi Phys. Scr. 87, 025703 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    W. C. Qiang and S. H. Dong, Phys. Lett. A 368, 13 (2007).ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    Z. Y. Chen, M. Li and C. S. Jia, Mod. Phys. Lett. A 24, 1863 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    W. C. Qiang, Chin. Phys. 12, 1054 (2003).ADSCrossRefGoogle Scholar
  13. [13]
    L. Z. Yi, Y. F. Diao, J. Y. Liu and C. S. Jia, Phys. Lett. A 333, 212 (2004).ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Eckart, Phys. Rev. 35, 1303 (1930).ADSCrossRefGoogle Scholar
  15. [15]
    F. Cooper, A. Kahare and U. Sukhatme, Phys. Rept. 251, 267 (1995).ADSCrossRefGoogle Scholar
  16. [16]
    J. J. Weiss, J. Chem. Phys. 41, 1120 (1964).ADSCrossRefGoogle Scholar
  17. [17]
    M. Aschi, C. Barrientos, V. M. Rayón, J. A. Sardo and A. Largo, Chem. Phys. Lett. 377, 594 (2003).Google Scholar
  18. [18]
    S. H. Dong, W. C. Qiang, G. H. Sun and V. B. Bezerra, J. Phys. A: Math. Theor. 40, 10535 (2007).ADSCrossRefGoogle Scholar
  19. [19]
    G. F. Wei, C. Y. Long, X. Y. Duan and S. H. Dong, Phys. Scr. 77, 035001 (2008).ADSCrossRefGoogle Scholar
  20. [20]
    C. Y. Chen, D. S. Sun and F. L. Lu, J. Phys. A: Math. Theor. 41, 035302 (2008).ADSCrossRefGoogle Scholar
  21. [21]
    X. Y. Liu, G. F. Wei and C. Y. Long, Int. J. Theor. Phys. 48, 463 (2009).CrossRefGoogle Scholar
  22. [22]
    C. S. Jia, P. Guo and X. L. Peng, J. Phys. A: Math. Gen. 39, 7737 (2006).ADSCrossRefGoogle Scholar
  23. [23]
    F. Ta¸skin and G. Kocak, Chin. Phys. 19, 090314 (2010).CrossRefGoogle Scholar
  24. [24]
    A. D. Antia, A. N. Ikot, E. E. Ituen and L. E. Akpabbio, Pal. J. Math. 12, 104 (2012).Google Scholar
  25. [25]
    C. S. Jia, X. L. Zeng and L. T. Sun, Phys. Lett. A 294, 185 (2002).ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. F. Nikiforov and Uvarov, Special Functions of Mathematical Physics (Birkhausr, Berlin, 1988).CrossRefGoogle Scholar
  27. [27]
    C. Tezcn and R. Sever, Int. J. Theor. Phys. 48, 337 (2009).CrossRefGoogle Scholar
  28. [28]
    S. M. Ikhdair, Int. J. Mod. Phys C 20, 25 (2009).ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Hamzavi, K. E. Thylwe and A. A. Rajabi, Commun. Theor. Phys. 60, 1 (2013).ADSCrossRefGoogle Scholar
  30. [30]
    A. N. Ikot, B. H. Yazarloo, E. Maghsoodi and S. Zarrinkamar, Afr. Rev. Phys. 8, 0049 (2013).Google Scholar
  31. [31]
    A. N. Ikot, T. M. Abbey, E. O. Chukwuocha and M. C. Onyeaju, Can. J. Phys. 94, 517 (2016).ADSCrossRefGoogle Scholar
  32. [32]
    C. A. Onate and J. O. Ojonubah, J. Theor. Appl. Phys. 10, 21 (2016).ADSCrossRefGoogle Scholar
  33. [33]
    Y. Olufadi, I. Salami, W. A. Yahya and M. Adelami, J. NAMP 31, 363 (2015).Google Scholar
  34. [34]
    H. P. Obong, A. N. Ikot, I. O. Owate and M. C. Onyeaju, J. NAMP 32, 1 (2015).Google Scholar
  35. [35]
    J. O. A. Idiodi and C. A. Onate, J. NAMP 34, 305 (2016).Google Scholar
  36. [36]
    S. M. Ikhdair, Eur. Phys. J. A. 39, 307 (2009).ADSCrossRefGoogle Scholar
  37. [37]
    S. M. Ikhdair and R. Sever, Appl. Math. Comput. 216, 911 (2010).MathSciNetGoogle Scholar
  38. [38]
    W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999).ADSCrossRefGoogle Scholar
  39. [39]
    S. R. Gadre and R. K. Pathak, Adv. Quant. Chem. 22, 1 (1991).CrossRefGoogle Scholar
  40. [40]
    M. Wilson, Nan. Tech.: Basic Scin. Emerg. Tech. (CRS Press, New York, 2003).Google Scholar
  41. [41]
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. (Cambridge University Press, Cambridge, 2001).zbMATHGoogle Scholar
  42. [42]
    B. J. Falaye, K. J. Oyewumi, S. M. Ikhdair and M. Hamzavi, Phys. Scr. 89, 115204 (2014).ADSCrossRefGoogle Scholar
  43. [43]
    P. Gibilisco, D. Imparato and T. Isola, Linear Alg. and its Appl. 428, 1706 (2008).CrossRefGoogle Scholar
  44. [44]
    S. A. Najafizade, H. Hassanabadi and S. Zarrinkamar, Chin. Phys. B 25, 040301 (2016).CrossRefGoogle Scholar
  45. [45]
    D. X. Macedo and I. Guedes, Phys. A 434, 211 (2015).MathSciNetCrossRefGoogle Scholar
  46. [46]
    K. J. Oyewumi, K. D. Sen and W. A. Yahya, Indian J. Chem. A 53, 1307 (2014).Google Scholar
  47. [47]
    W. A. Yahya, K. J. Oyewumi and K. D. Sen, Int. J. Quant. Chem. 115, 1543 (2015).CrossRefGoogle Scholar
  48. [48]
    W. A. Yahya, K. J. Oyewumi and K. D. Sen, J. Math. Chem. 115, 1543 (2015).Google Scholar
  49. [49]
    B. J. Falaye, F. A. Serrano and S. H. Dong, Phys. lett. A 380, 267 (2016).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • C. A. Onate
    • 1
  • M. C. Onyeaju
    • 2
    Email author
  • A. N. Ikot
    • 2
  • J. O. A. Idiodi
    • 3
  • J. O. Ojonubah
    • 4
  1. 1.Department of Physical SciencesLandmark UniversityOmu-AranNigeria
  2. 2.Theoretical Physics Group, Department of PhysicsUniversity of Port HarcourtPort HarcourtNigeria
  3. 3.Theoretical/Mathematical Physics Section, Department of PhysicsUniversity of BeninBeninNigeria
  4. 4.Mathematics DepartmentFederal College of Education OkeneBeninNigeria

Personalised recommendations