Journal of the Korean Physical Society

, Volume 70, Issue 2, pp 162–168 | Cite as

Annealing effect of fluorine-doped SnO2/WO3 core-shell inverse opal nanoarchitecture for photoelectrochemical water splitting

  • Seo Yoon Cho
  • Soon Hyung Kang
  • Gun Yun
  • Maheswari Balamurugan
  • Kwang-Soon Ahn
Article

Abstract

Fluorine-doped SnO2 inverse opal (FTO IO) was developed on a polystyrene bead template with a size of 350 nm (± 20 nm) by using the sol-gel-assisted spin-coating method. The resulting FTO IO film exhibited a pore diameter of 270 nm (± 5 nm), and a WO3 layer was electrodeposited with a constant charge of 400 mC/cm2, followed by a high-temperature annealing process (400, 475, and 550 °C) to increase the crystallinity of the IO films. The annealing temperature affected the morphology and the overall resistance of the thin film, thus significantly affecting the photoelectrochemical performance. In particular, the FTO/WO3 IO film annealed at 475 °C exhibited a photocurrent density of 2.9 mA/cm2 at 1.23 V versus normal hydrogen electrode, showing more than a three times higher photocurrent density in comparison with the other samples (550 °C), which is attributed to the large surface area and low resistance for the charge transport. Therefore, the annealing temperature significantly affects the morphological and the photoelectrochemical features of the FTO/WO3 IO films.

Keywords

Photoelectrochemical water splitting WO3 Core-shell nanostructure Annealing temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Grewe, M. Meggouh and H. Tüysüz, Chem. Asian J. 11, 22 (2016).CrossRefGoogle Scholar
  2. [2]
    F. E. Osterloh, Chem. Soc. Rev. 42, 2294 (2013).CrossRefGoogle Scholar
  3. [3]
    K. Sivula, F. L. Formal and M. Gratzel, Chem. Sus. Chem. 4, 432 (2011).CrossRefGoogle Scholar
  4. [4]
    Y. O. Kim, K. S. Ahn and S. H. Kang, Mater. Lett. 151, 28 (2015).CrossRefGoogle Scholar
  5. [5]
    G. Hodes, D. Cahen and J. Manassen, Nature 260, 312 (1976).ADSCrossRefGoogle Scholar
  6. [6]
    K. Yamanaka, Jpn. J. Appl. Phys. 26, 1884 (1987).ADSCrossRefGoogle Scholar
  7. [7]
    G. Yun, M. Balamurugan, H. S. Kim, K. S. Ahn and S. H. Kang, J. Phys. Chem. C 120, 5906 (2016).CrossRefGoogle Scholar
  8. [8]
    Y. Gun, G. Y. Song, V. H. Quy, J. Heo, H. Lee, K. S. Ahn and S. H. Kang, ACS Appl. Mater. Interfaces 7, 20292 (2015).CrossRefGoogle Scholar
  9. [9]
    K. S. Ahn, S. H. Lee, A. C. Dillon, C. E. Tracy and R. Potts, J. Appl. Phys. 101, 093524 (2007).ADSCrossRefGoogle Scholar
  10. [10]
    C. Ng, Y. H. Ng, A. Iwase and R. Amal, ACS Appl. Mater. Interfaces 5, 5269 (2013).CrossRefGoogle Scholar
  11. [11]
    Y. O. Kim, S. H. Yu, K. S. Ahn, S. K. Lee and S. H. Kang, J. Electroanal. Chem. 752, 25 (2015).CrossRefGoogle Scholar
  12. [12]
    H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider and M. Eich, Opt. Mater. Express 3, 1007 (2013).CrossRefGoogle Scholar
  13. [13]
    B. ORegan, L. Xiaoe and T. Ghaddar, Energy Environ. Sci. 5, 7203 (2012).CrossRefGoogle Scholar
  14. [14]
    D. Chen, L. Gao, A. Y. K. Kuroda and Y. Sugahara, Small 4, 1813 (2008).CrossRefGoogle Scholar
  15. [15]
    L. Wang, L. Yuan, X. Wu, J. Wu, C. Hou and S. Feng, RSC Adv. 4, 47670 (2014).CrossRefGoogle Scholar
  16. [16]
    J. S. Baik, G. Yun, M. Balamurugan, S. K. Lee, J. H. Kim, K. S. Ahn and S. H. Kang, J. Electrochem. Soc. 163, H1165 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • Seo Yoon Cho
    • 1
  • Soon Hyung Kang
    • 1
  • Gun Yun
    • 2
  • Maheswari Balamurugan
    • 3
  • Kwang-Soon Ahn
    • 4
  1. 1.Department of Chemistry EducationChonnam National UniversityGwangjuKorea
  2. 2.School of Applied Chemical EngineeringChonnam National UniversityGwangjuKorea
  3. 3.Department of ChemistryChonnam National UniversityGwangjuKorea
  4. 4.Department of Chemical EngineeringYeungnam UniversityGyeongsanKorea

Personalised recommendations