Journal of the Korean Physical Society

, Volume 70, Issue 12, pp 1049–1053 | Cite as

Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing



Via a dynamical cluster approximation with Nc = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with Nc = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.


Hubbard model Superconductivity Dynamical cluster approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. [2]
    P. W. Anderson, Science 235, 1196 (1987).ADSCrossRefGoogle Scholar
  3. [3]
    S. Hüfner, M. A. Hossain, A. Damascelli and G. A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008).ADSCrossRefGoogle Scholar
  4. [4]
    A. I. Lichtentein and M. I. Katsnelson, Phys. Rev. B 62, 9283(R) (2000).Google Scholar
  5. [5]
    T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent and J. B. White, Phys. Rev. Lett. 95, 237001 (2005).ADSCrossRefGoogle Scholar
  6. [6]
    M. Sentef, P. Werner, E. Gull and A. Kampf, Phys. Rev. Lett. 107, 126401 (2011).ADSCrossRefGoogle Scholar
  7. [7]
    G. Sordi, P. Semon, K. Haule and A. M. Tremblay, Phys. Rev. Lett. 108, 216401 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    E. Gull, O. Parcollet and A. J. Millis, Phys. Rev. Lett. 110, 216405 (2013).ADSCrossRefGoogle Scholar
  9. [9]
    E. Gull, P. Werner, X. Wang, M. Troyer and A. J. Millis, Europhys. Lett. 84, 37009 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).ADSCrossRefGoogle Scholar
  11. [11]
    S. Okamoto, A. Fuhrmann, A. Comanac and A. J. Millis, Phys. Rev. B 71, 235113 (2005).ADSCrossRefGoogle Scholar
  12. [12]
    H. Lee, Y. Z. Zhang, H. Lee, Y. Kwon, H. O. Jeschke and R. Valenti, Phys. Rev. B 88, 165126 (2013).ADSCrossRefGoogle Scholar
  13. [13]
    E. Gull and A. J. Millis, Phys. Rev B 91, 085116 (2015).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Department of General StudiesKangwon National UniversitySamcheokKorea

Personalised recommendations