Advertisement

Journal of the Korean Physical Society

, Volume 69, Issue 5, pp 884–888 | Cite as

Accuracy in measuring the neutron star mass in the gravitational wave parameter estimation for black hole-neutron star binaries

  • Hee-Suk Cho
Brief Reports

Abstract

Recently, two gravitational wave (GW) signals, named as GW150914 and GW151226, have been detected by the two LIGO detectors. Although both signals were identified as originating from merging black hole (BH) binaries, GWs from systems containing neutron stars (NSs) are also expected to be detected in the near future by the advanced detector network. In this work, we assess the accuracy in measuring the NS mass (M NS) for the GWs from BH-NS binaries adopting the Advanced LIGO sensitivity with a signal-to-noise ratio of 10. By using the Fisher matrix method, we calculate the measurement errors (σ) in M NS assuming a NS mass of 1 ≤ M NS/M ≤ 2 and low-mass BHs with masses in the range of 4 ≤ M BH/M ≤ 10. We use the TaylorF2 waveform model in which the spins are aligned with the orbital angular momentum, but here we only consider the BH spins. We find that the fractional errors (σ/M NS × 100) are in the range of 10% − 50% in our mass region for a given dimensionless BH spin χBH = 0. The errors tend to increase as the BH spin increases, and this tendency is stronger for higher NS masses (or higher total masses). In particular, for the highest mass NSs (M NS = 2 M ), the errors σ can be larger than the true value of M NS if the dimensionless BH spin exceeds ~ 0.6.

Keywords

Gravitational waves Parameter estimation Fisher matrix Black hole Neutron star 

PACS numbers

04.30.-w 04.80.Nn 95.55.Ym 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241102 (2016).ADSCrossRefGoogle Scholar
  3. [3]
    B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016).ADSCrossRefGoogle Scholar
  4. [4]
    B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), arXiv:1606.01210 (2016).Google Scholar
  5. [5]
    J. Abadie et al.(LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 27, 173001 (2010).ADSCrossRefGoogle Scholar
  6. [6]
    M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D. Holz, T. Bulik and F. Pannarale, Astrophys. J. 806, 263 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration), arXiv:1606.04856 (2016).Google Scholar
  8. [8]
    C. Kim, B. P. P. Perera and M. A. McLaughlin, MNRAS 448, 928 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    J. M. Lattimer and M. Prakash, Phy. Repts. 442, 109 (2007).ADSCrossRefGoogle Scholar
  10. [10]
    M. Prakash, arXiv:1307.0397 (2013).Google Scholar
  11. [11]
    P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J. W. T. Hessels, Nature 467, 1081 (2010).ADSCrossRefGoogle Scholar
  12. [12]
    J. Antoniadis et al., Science 340, 448 (2013).ADSCrossRefGoogle Scholar
  13. [13]
    J. Aasi et al.(LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).ADSCrossRefGoogle Scholar
  14. [14]
    H.-S. Cho, J. Korean Phys. Soc. 66, 1637 (2015).ADSCrossRefGoogle Scholar
  15. [15]
    H.-S. Cho, J. Korean Phys. Soc. 67, 960 (2015).ADSCrossRefGoogle Scholar
  16. [16]
    B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44, 3819 (1991).ADSCrossRefGoogle Scholar
  17. [17]
    C. Cutler and E. É. Flanagan, Phys. Rev. D 49, 2658 (1994).ADSCrossRefGoogle Scholar
  18. [18]
    E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).ADSCrossRefGoogle Scholar
  19. [19]
    K. G. Arun, A. Buonanno, G. Faye and E. Ochsner, Phys. Rev. D 79, 104023 (2009).ADSCrossRefGoogle Scholar
  20. [20]
    Advanced LIGO anticipated sensitivity curves, https://dcc.ligo.org/LIGO-T0900288/public.Google Scholar
  21. [21]
    L. S. Finn, Phys. Rev. D 46, 5236 (1992).ADSCrossRefGoogle Scholar
  22. [22]
    M. Vallisneri, Phys. Rev. D 77, 042001 (2008).ADSCrossRefGoogle Scholar
  23. [23]
    P. Jaranowski and A. Królak, Phys. Rev. D 49, 1723 (1994).ADSCrossRefGoogle Scholar
  24. [24]
    H.-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C.-H. Lee, Phys. Rev. D 87, 024004 (2013).ADSCrossRefGoogle Scholar
  25. [25]
    C. P. L. Berry, et al., Astrophys. J. 804, 114 (2015).ADSCrossRefGoogle Scholar
  26. [26]
    C. L. Rodriguez, B. Farr, W. Farr and I. Mandel, Phys. Rev. D 88, 084013 (2013).ADSCrossRefGoogle Scholar
  27. [27]
    I. Mandel, C. Berry, F. Ohme, S. Fairhurst and W. M. Farr, Class. Quantum Grav. 31, 155005 (2014).ADSCrossRefGoogle Scholar
  28. [28]
    H.-S. Cho and C.-H. Lee, Class. Quantum Grav. 31, 235009 (2014).ADSCrossRefGoogle Scholar
  29. [29]
    R. O’Shaughnessy, B. Farr, H.-S. Cho, C. Kim and C.-H. Lee, Phys. Rev. D 89, 064048 (2014).ADSCrossRefGoogle Scholar
  30. [30]
    H.-S. Cho, Class. Quantum Grav. 32, 235007 (2015).ADSCrossRefGoogle Scholar
  31. [31]
    M. Hannam, D. A. Brown, S. Fairhurst, C. L. Fryer and I. W. Harry, Astrophys. J. 766, L14 (2013).ADSCrossRefGoogle Scholar
  32. [32]
    T. B. Littenberg, B. Farr, C. Coughlin, V. Kalogera and D. E. Holz, Astrophys. J. 807, L24 (2015).ADSCrossRefGoogle Scholar
  33. [33]
    I. Mandel, C. Haster, M. Dominik and K. Belczynski, MNRAS 450, L85 (2015).ADSCrossRefGoogle Scholar
  34. [34]
    P. Ajith et al., Class. Quantum Grav. 24, S689 (2007).ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Ajith et al., Phys. Rev. D 77, 104017 (2008); 79, 129901(E) (2009).ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P. Ajith, Class. Quantum Grav. 25, 114033 (2008).ADSCrossRefGoogle Scholar
  37. [37]
    P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).ADSCrossRefGoogle Scholar
  38. [38]
    L. Santamaria et al., Phys. Rev. D 82, 064016 (2010).ADSCrossRefGoogle Scholar
  39. [39]
    S. Khan et al., Phys. Rev. D 93, 044007 (2016).ADSCrossRefGoogle Scholar
  40. [40]
    M. Hannam et al., Phys. Rev. Lett. 113, 151101 (2014).ADSCrossRefGoogle Scholar
  41. [41]
    H.-S. Cho, Class. Quantum Grav. 32, 215023 (2015).ADSCrossRefGoogle Scholar
  42. [42]
    R. N. Lang and S. A. Hughes, Phys. Rev. D 74, 122001 (2006).ADSCrossRefGoogle Scholar
  43. [43]
    A. Klein, P. Jetzer and M. Sereno, Phys. Rev. D 80, 064027 (2009).ADSCrossRefGoogle Scholar
  44. [44]
    R. O’Shaughnessy, B. Farr, E. Ochsner, H.-S. Cho, V. Raymond, C. Kim and C.-H. Lee, Phys. Rev. D 89, 102005 (2014).ADSCrossRefGoogle Scholar
  45. [45]
    K. Chatziioannou, N. Cornish, A. Klein and N. Yunes, Astrophys. J. 798, L17 (2014).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Korea Institute of Science and Technology InformationDaejeonKorea

Personalised recommendations