Journal of the Korean Physical Society

, Volume 69, Issue 11, pp 1656–1665 | Cite as

Minimization of three-dimensional beam emittance growth in rare-isotope accelerator



In this paper, we describe a research to minimize the three-dimensional (3D) emittance growth (EG) in the RAON accelerator, a heavy ion accelerator currently being developed in Korea to produce various rare isotopes. The emittance minimization is performed using the multi-objective genetic algorithm and the simplex method. We use them to analyze the driver linac for the in-flight fragmentation separator of the RAON facility and show that redesign of the 90-degree bending section of the RAON accelerator together with adjustment of optics in the upstream and downstream superconducting linacs can limit the 3D EG to ~20 % in the entire region of the driver linac. Effects of various magnet and rf accelerating cavity errors on the beam-EG are also discussed.


Heavy ion accelerator Genetic algorithm Emittance growth Simplex 

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Jeon et al., J. Korean Phys. Soc. 55, 7 (2014).Google Scholar
  2. [2]
    K. Deb, Multi-objective Optimization using Evolutionary Algorithms (John Wiley & Sons, Ltd, Chichester, 2001).MATHGoogle Scholar
  3. [3]
    K. Deb, A. Pratap, S. Agrawal and T. Meyarivan, IEEE Trans. Evolut. Comput. 6, 182 (2002).CrossRefGoogle Scholar
  4. [4]
    L. Yang, D. Robin, F. Sannibale, C. Steire and W. Wan, Nucl. Instrum. Methods Phys. Res. A 609, 50 (2009).ADSCrossRefGoogle Scholar
  5. [5]
    W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, in Numerical Recipes in C: The Art of Scientific Computing (2nd ed., Cambridge University Press, Cambridge, 1992), Chap. 10.4.MATHGoogle Scholar
  6. [6]
    E. S. Kim, J. Bahng, J. Hwang, B. Choi, H. Kim and D. Jeon, Nucl. Instrum. Methods Phys. Res. A 794, 215 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    C. Caso et al., Eur. Phys. J. C 3, 1 (1998).Google Scholar
  8. [8]
    J. D. Jackson, Classical Electorodynamics, (John Wiley & Sons, Ltd, Chichester, 1999).Google Scholar
  9. [9]
    Max B. Reid, Jpn. J. Appl. Phys. 70, 7185 (1991).ADSCrossRefGoogle Scholar
  10. [10] Scholar
  11. [11] Scholar
  12. [12] Scholar
  13. [13]
    B. Erdelyi, J. Maloney and J. Nolen, Phy. Rev. ST Accel. Beams 10, 064002 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    J. Maloney, Master’s thesis, Norther Illinois University, DeKalb, IL (2006).Google Scholar
  15. [15]
    M. Pasini and R. E Laxdal, Proc. of EPAC 2002, p. 1175.Google Scholar
  16. [16]
    K. L. Brown, SLAC Report-75 (1982).Google Scholar
  17. [17]
    K. Makino and M. Berz, Nucl. Instrum. Methods Phys. Res. A558, 346 (2006).ADSCrossRefGoogle Scholar
  18. [18]
    J. Hwang, E. S. Kim, H. Kim and D. Jeon, Nucl. Instrum. Methods Phys. Res. A767, 153 (2014).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangKorea

Personalised recommendations