Journal of the Korean Physical Society

, Volume 69, Issue 11, pp 1656–1665 | Cite as

Minimization of three-dimensional beam emittance growth in rare-isotope accelerator

Article

Abstract

In this paper, we describe a research to minimize the three-dimensional (3D) emittance growth (EG) in the RAON accelerator, a heavy ion accelerator currently being developed in Korea to produce various rare isotopes. The emittance minimization is performed using the multi-objective genetic algorithm and the simplex method. We use them to analyze the driver linac for the in-flight fragmentation separator of the RAON facility and show that redesign of the 90-degree bending section of the RAON accelerator together with adjustment of optics in the upstream and downstream superconducting linacs can limit the 3D EG to ~20 % in the entire region of the driver linac. Effects of various magnet and rf accelerating cavity errors on the beam-EG are also discussed.

Keywords

Heavy ion accelerator Genetic algorithm Emittance growth Simplex 

PACS numbers

29.27.Fh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Jeon et al., J. Korean Phys. Soc. 55, 7 (2014).Google Scholar
  2. [2]
    K. Deb, Multi-objective Optimization using Evolutionary Algorithms (John Wiley & Sons, Ltd, Chichester, 2001).MATHGoogle Scholar
  3. [3]
    K. Deb, A. Pratap, S. Agrawal and T. Meyarivan, IEEE Trans. Evolut. Comput. 6, 182 (2002).CrossRefGoogle Scholar
  4. [4]
    L. Yang, D. Robin, F. Sannibale, C. Steire and W. Wan, Nucl. Instrum. Methods Phys. Res. A 609, 50 (2009).ADSCrossRefGoogle Scholar
  5. [5]
    W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, in Numerical Recipes in C: The Art of Scientific Computing (2nd ed., Cambridge University Press, Cambridge, 1992), Chap. 10.4.MATHGoogle Scholar
  6. [6]
    E. S. Kim, J. Bahng, J. Hwang, B. Choi, H. Kim and D. Jeon, Nucl. Instrum. Methods Phys. Res. A 794, 215 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    C. Caso et al., Eur. Phys. J. C 3, 1 (1998).Google Scholar
  8. [8]
    J. D. Jackson, Classical Electorodynamics, (John Wiley & Sons, Ltd, Chichester, 1999).Google Scholar
  9. [9]
    Max B. Reid, Jpn. J. Appl. Phys. 70, 7185 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    http://www.srim.org/.Google Scholar
  11. [11]
    http://www.phy.anl.gov/atlas/TRACK/.Google Scholar
  12. [12]
    http://dynac.web.cern.ch/dynac/dynac.html.Google Scholar
  13. [13]
    B. Erdelyi, J. Maloney and J. Nolen, Phy. Rev. ST Accel. Beams 10, 064002 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    J. Maloney, Master’s thesis, Norther Illinois University, DeKalb, IL (2006).Google Scholar
  15. [15]
    M. Pasini and R. E Laxdal, Proc. of EPAC 2002, p. 1175.Google Scholar
  16. [16]
    K. L. Brown, SLAC Report-75 (1982).Google Scholar
  17. [17]
    K. Makino and M. Berz, Nucl. Instrum. Methods Phys. Res. A558, 346 (2006).ADSCrossRefGoogle Scholar
  18. [18]
    J. Hwang, E. S. Kim, H. Kim and D. Jeon, Nucl. Instrum. Methods Phys. Res. A767, 153 (2014).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangKorea

Personalised recommendations