Journal of the Korean Physical Society

, Volume 69, Issue 11, pp 1625–1630

Analytic evaluation of the high-order quantum correlation for non-locality

Article

Abstract

From the view of non-locality, a possible high-dimensional quantum correlation has been investigated. Specifically, the convex sum of high moment correlations in a maximally entangled state of d-dimensional systems has been evaluated. The problem is demonstrated to be finding the determinant of symmetric matrices. With the correlation, the violation of local hidden variable model is illustrated as a function of dimensionality. It is found that the correlation function becomes analytic at an asymptotic limit and it is shown that the values at the limit can be obtained from the recent mathematical theorem on the determinant of Toplitze matrix.

Keywords

High order correlation Nonlocality Bell’s inequality 

PACS numbers

03.65.Ud 03.65.Fd 03.67.-a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  2. [2]
    D. Collins, N. Gisin, N. Linden, S. Massar and S. Popescu, Phys. Rev. Lett. 88, 040404 (2001).MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. K. Giri, B. Sen, A. Pathak and P. C. Jana, Phys. Rev. A 93, 012340 (2016).ADSCrossRefGoogle Scholar
  4. [4]
    K. Thapliyal, A. Pathak, B. Sen and J. Peřina, Phys. Rev. A 90, 013808 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler and A. Zeilinger, Nature Photonics 10, 248 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    W. Son, J. Lee and M. Kim, Phys. Rev. Lett. 96, 060406 (2006).ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    W. Son and M. S. Kim, arXiv:1509.01984Google Scholar
  8. [8]
    M. Zukowski and C. Bruckner, Phys. Rev. Lett. 88, 210401 (2002).ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. D. Bancal, N. Gisin and S. Pironio, J. Phys. A:Math. Theor. 43, 385303 (2010).ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    B. Tirelson, Lett. Math. Phys. 4, 93 (2014).Google Scholar
  11. [11]
    A. Acin, T. Durt, N. Gisin and J. Latorre, Phys. Rev. A 65, 052325 (2002).ADSCrossRefGoogle Scholar
  12. [12]
    J. Chen, C. Wu, L. C. Kwek, C. H. Oh and M. L. Ge, Phys. Rev. A 74, 032106 (2006).ADSCrossRefGoogle Scholar
  13. [13]
    M. G. Hue, D. L. Deng and J. L. Chen, Int. J. Quantum Inf. 6, 1067 (2008).CrossRefGoogle Scholar
  14. [14]
    S. Zohren and R. D. Gill, Phys. Rev. Lett. 100, 120406 (2006).CrossRefGoogle Scholar
  15. [15]
    S. Zohren, P. Reska, R. D. Gill and W. Westra, EPL 90, 10002 (2010).ADSCrossRefGoogle Scholar
  16. [16]
    M. R. Atkin and S. Zohren, Phys. Rev. A 92, 012331 (2015).ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Tavakoli, S. Zohren and M. Pawlowski, J. Phys. A:Math. Theor. 49, 145301 (2016).ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G. Bae and W. Son, Curr. Appl. Phys. 16, 3 (2016).Google Scholar
  19. [19]
    U. Grenander and G. Szegö, Toeplitz forms and their application (University of California Press, Berkeley and Los Angeles, 1958).MATHGoogle Scholar
  20. [20]
    P. Zizler et al., Siam J. Matrix Appl. 24, 1 (2002).MathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Gazzah, P. A. Regali and J. P. Delmas, IEEE Trans. Inf. Theory 47, 3 (2001).CrossRefGoogle Scholar
  22. [22]
    S. Serra, Linear Algebra Appl. 270, 109 (1998).MathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Noschese, L. Pasquini and L. Reichel, Numer. Linear Algebra Appl. 20, 302 (2013).MathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Solary, J. Math. Anal. Appl. 402, 719 (2013).MathSciNetCrossRefGoogle Scholar
  25. [25]
    W. Trench, Linear Algebra Appl. 302-303, 155 (1999).MathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Melman, Math. Comput. 70, 234 (2000).MathSciNetCrossRefGoogle Scholar
  27. [27]
    R. M. Gray, Found. Trends Commun. Inf. Theory 2, 3 (2006).Google Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Department of PhysicsSogang UniversitySeoulKorea

Personalised recommendations