Journal of the Korean Physical Society

, Volume 69, Issue 10, pp 1523–1530 | Cite as

Minimization of transverse beam-emittance growth in the 90-degree bending section of the RAON rare-isotope accelerator



The major contribution of the transverse beam emittance growth (EG) in a RAON heavy-ion accelerator comes from the bending section, which consists of a charge-stripping section, a matching section, and a charge-selection section in sequence. In this paper, we describe our research to minimize the two-dimensional EG in the 90-degree bending section of the RAON currently being developed in Korea. The EG minimization was achieved with the help of multi-objective genetic algorithms and the simplex method. We utilized those algorithms to analyze the 90-degree bending section in a driver linac for the in-flight fragmentation system. Horizontal and vertical EGs were limited to below 10 % in the bending section by adjustment of the transverse beam optics upstream from the charge-stripping section, redesign of the charge-selection section, and optimization of the vertical beam optics at the entrance of a charge-selection section.


Heavy-ion accelerator Genetic algorithm Emittance growth Simplex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Kofoed Hansen, in Proceedings of 3rd International Conference on Nuclei Far from Stability (Cargése, France, 1976), p. 65.Google Scholar
  2. [2]
    Jung Keun Ahn et al., Baseline Design Summary, Institute for Basic Science, Scholar
  3. [3]
    K. Deb, Multi-objective Optimization using Evolutionary Algorithms (John Wiley & Sons, Chichester, 2001).MATHGoogle Scholar
  4. [4]
    K. Deb et al., IEEE Trans. on Evolutionary Computation (IEEE-TEC) 6, 182 (2002).CrossRefGoogle Scholar
  5. [5]
    L. Yang et al., Nucl. Instrum. Meth. Phys. Res. A 609, 50 (2009).ADSCrossRefGoogle Scholar
  6. [6]
    W. H. Press et al., Numerical Recipes in C: The Art of Scientific Computing, 2nd Edition (Cambridge University Press, Cambridge, 1992) p. 408.Google Scholar
  7. [7]
    C. Caso et al., Eur. Phys. J. C3, 1 (1998).Google Scholar
  8. [8]
    J. D. Jackson, Classical Electorodynamics (John Wiley & Sons, Chichester, 1999), p. 624.Google Scholar
  9. [9]
    D. A. Eastham, Nucl. Instrum. Meth. Phys. Res. A 125, 277 (1975).ADSCrossRefGoogle Scholar
  10. [10]
    G. Högberg and H. Nordén, Nucl. Instrum. Meth. 90, 283 (1970).ADSCrossRefGoogle Scholar
  11. [11]
    B. Mustapha and P. N. Ostroumov, Phy. Rev. ST Accel. Beams 8, 090101 (2005).ADSCrossRefGoogle Scholar
  12. [12]
    Max B. Reid, J. Appl. Phys. 70, 7185 (1991).ADSCrossRefGoogle Scholar
  13. [13]
    J. Hwang, E. S. Kim, H. Kim and D. Jeon, Nucl. Instrum. Meth. Phys. Res. A 767, 153 (2014).ADSCrossRefGoogle Scholar
  14. [14] Scholar
  15. [15] Scholar
  16. [16] Scholar
  17. [17]
    B. Erdelyi, J. Maloney and J. Nolen, Phy. Rev. ST Accel. Beams 10, 064002 (2007).ADSCrossRefGoogle Scholar
  18. [18]
    J. Maloney, Master’s thesis, Norther Illinois University, 2006.Google Scholar
  19. [19]
    M. Pasini and R. E Laxdal, in Proceedings of EPAC 2002 (Paris, France, 2002), p. 1175.Google Scholar
  20. [20]
    K. L. Brown, SLAC Report-75 (SLAC, 1982).Google Scholar
  21. [21]
    K. Makino and M. Berz, Nucl. Instrum. Meth. Phys. Res. A 558, 346 (2006).ADSCrossRefGoogle Scholar
  22. [22] Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangKorea

Personalised recommendations