Advertisement

Journal of the Korean Physical Society

, Volume 69, Issue 7, pp 1175–1181 | Cite as

Monte Carlo simulations of safeguards neutron counter for oxide reduction process feed material

  • Hee Seo
  • Chaehun Lee
  • Jong-Myeong Oh
  • Su Jung An
  • Seong-Kyu Ahn
  • Se-Hwan Park
  • Jeong-Hoe Ku
Article

Abstract

One of the options for spent-fuel management in Korea is pyroprocessing whose main process flow is the head-end process followed by oxide reduction, electrorefining, and electrowining. In the present study, a well-type passive neutron coincidence counter, namely, the ACP (Advanced spent fuel Conditioning Process) safeguards neutron counter (ASNC), was redesigned for safeguards of a hot-cell facility related to the oxide reduction process. To this end, first, the isotopic composition, gamma/neutron emission yield and energy spectrum of the feed material (i.e., the UO2 porous pellet) were calculated using the OrigenARP code. Then, the proper thickness of the gammaray shield was determined, both by irradiation testing at a standard dosimetry laboratory and by MCNP6 simulations using the parameters obtained from the OrigenARP calculation. Finally, the neutron coincidence counter’s calibration curve for 100- to 1000-g porous pellets, in consideration of the process batch size, was determined through simulations. Based on these simulation results, the neutron counter currently is under construction. In the near future, it will be installed in a hot cell and tested with spent fuel materials.

Keywords

Neutron measurement Safeguards Non-destructive assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. C. Song, H. Lee, J. M. Hur, J. G. Kim, D. H. Ahn and Y. Z. Cho, Nucl. Eng. Technol. 42, 131 (2010).CrossRefGoogle Scholar
  2. [2]
    H. Lee, G. I. Park, K. H. Kang, J. M. Hur, J. G. Kim, D. H. Ahn, Y. Z. Cho and E. H. Kim, Nucl. Eng. Technol. 43, 317 (2011).CrossRefGoogle Scholar
  3. [3]
    H. Lee, G. I. Park, J. W. Lee, K. H. Kang, J. M. Hur, J. G. Kim, S. Paek, I. T. Kim and I. J. Cho, Sci. Tech. Nucl. Install. 2013, 343492 (2013).CrossRefGoogle Scholar
  4. [4]
    Y. Kim, J. H. Park, H. Y. Cho, J. H. Kim, H. Kwon, H. Seo, S. H. Park and C. H. Kim, J. Radiat. Prot. Res. 40, 1 (2015).CrossRefGoogle Scholar
  5. [5]
    J. P. Ackerman, I&EC Res. 30, 141 (1991).Google Scholar
  6. [6]
    J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman and E. L. Carls, Prog. Nucl. Energy 31, 131 (1997).CrossRefGoogle Scholar
  7. [7]
    M. F. Simpson, Idaho National Laboratory Report, INL/EXT-12-25124 (2012).Google Scholar
  8. [8]
    E. Y. Choi and S. M. Jeong, Prog. Nat. Sci. Mater. Int. 25, 572 (2015).CrossRefGoogle Scholar
  9. [9]
    I. J. Cho, D. H. Kook, K. C. Kwon, E. P. Lee, W. M. Choung and G. S. You, Health Phys. 94, S65 (2008).CrossRefGoogle Scholar
  10. [10]
    G. S. You, W. M. Choung, J. H. Ku, I. J. Cho, D. H. Kook, K. C. Kwon, E. P. Lee and W. K. Lee, Nucl. Eng. Technol. 41, 859 (2009).CrossRefGoogle Scholar
  11. [11]
    S. N. Yu, J. K. Lee, B. S. Park, I. J. Cho and K. Kim, Nucl. Eng. Technol. 47, 776 (2015).CrossRefGoogle Scholar
  12. [12]
    T. H. Lee, H. D. Kim, K. J. Jung and S. W. Park, J. Korean Phys. Soc. 48, 218 (2006).Google Scholar
  13. [13]
    T. H. Lee, H. D. Kim, J. S. Yoon, S. Y. Lee, M. Swinhoe and H. O. Menlove, Nucl. Instrum. Meth. A 580, 1423 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    T. H. Lee, H. O. Menlove, S. Y. Lee and H. D. Kim, Nucl. Instrum. Meth. A 589, 57 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    N. Ensslin, W. C. Harker, M. S. Krick, D. G. Langner, M. M. Pickrell and J. E. Stewart, Los Alamos National Laboratory Report, LA-13422-M (1998).Google Scholar
  16. [16]
    D. Reilly, N. Ensslin, H. Smith, and S. Kreiner, Los Alamos National Laboratory Report, LA-UR-90-0732 (1991).Google Scholar
  17. [17]
    P. M. Rinard and H. O. Menlove, Los Alamos National Laboratory Report, LA-13134-MS (1996).Google Scholar
  18. [18]
    T. H. Lee, Y. S. Kim, H. S. Shin and H. D. Kim, Nucl. Technol. 176, 147 (2011).Google Scholar
  19. [19]
    T. H. Lee, Y. S. Kim, H. S. Shin and H. D. Kim, Nucl. Technol. 176, 147 (2011).Google Scholar
  20. [20]
    B. Y. Han, S. H. Na, S. H. Park, H. D. Kim, D. Y. Lee, Y. S. Lee, J. M. Shin and G. I Park, J. Nucl. Sci. Technol. 51, 1205 (2014).CrossRefGoogle Scholar
  21. [21]
    I. C. Gauld, S. M. Bowman and J. E. Horwedel, Oak Ridge National Laboratory Report, ORNL/NUREG/CSD-2/V1/R7 (2004).Google Scholar
  22. [22]
    T. Goorley et al, Nucl. Technol. 180, 298 (2012).Google Scholar
  23. [23]
    International Commission on Radiological Protection (ICRP), ICRP publication 116 (2010).Google Scholar
  24. [24]
    C. Willman, A. Hakansson, O. Osifo, A. Bäcklin and S. J. Svärd, Ann. Nucl. Ener. 33, 427 (2006).CrossRefGoogle Scholar
  25. [25]
    T. Goorley, D. Olsher, Los Alamos National Laboratory Report, LA-UR-05-2755 (2005).Google Scholar
  26. [26]
    M. M. Pickrell, K. Veal and N. Ensslin, Los Alamos National Laboratory Report, LA-UR-07-1602 (2007).Google Scholar
  27. [27]
    H. Seo, S. K. Lee, S. J. An, S. H. Park, J. H. Ku, H. O. Menlove, C. D. Rael, A. M. LaFleur and M. C. Browne, Appl. Radiat. Isot. 115, 67 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Hee Seo
    • 1
  • Chaehun Lee
    • 1
  • Jong-Myeong Oh
    • 1
  • Su Jung An
    • 1
  • Seong-Kyu Ahn
    • 1
  • Se-Hwan Park
    • 1
  • Jeong-Hoe Ku
    • 1
  1. 1.Korea Atomic Energy Research InstituteDaejeonKorea

Personalised recommendations