Advertisement

Journal of the Korean Physical Society

, Volume 69, Issue 1, pp 103–106 | Cite as

KERMA-based radiation dose management system for real-time patient dose measurement

  • Kyo-Tae Kim
  • Ye-Ji Heo
  • Kyung-Min Oh
  • Sang-Hee NamEmail author
  • Sang-Sik Kang
  • Ji-Koon Park
  • Yong-Keun Song
  • Sung-Kwang Park
Article

Abstract

Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient’s radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient’s radiation exposure and acquisition of diagnostic images.

Keywords

General radiography Management system Patient exposure dose Entrance skin dose Kinetic energy released per unit mass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. G. Jung, C. H. Lee, K. M. Bae, J. M. Lee, S. M. Lee, C. H. Lim, S. M. Yun, H. K. Kim and J. S. Ko, Opt. Express 18, 14850 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    R. A. Lujan and R. A. Street, IEEE Electron Device Lett. 33, 688 (2012).ADSCrossRefGoogle Scholar
  3. [3]
    H. T. Han et al., Nanoscale Res. Lett. 9, 610 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    S. J. Shepard et al., Med. Phys. 36, 2898 (2009).CrossRefGoogle Scholar
  5. [5]
    World Health Organization, IAEA Safety Series 115 (1996).Google Scholar
  6. [6]
    E. Correa, R. Medeiros, M. D. Penha Potiens, V. Vivolo, N. Costa, C. Murata and C. Kikuti, J. Modern Phys. 6, 483 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    Korea Food & Drug Administration, Radiat. Safety Series 30 (2012).Google Scholar
  8. [8]
    S. T. Kim, B. H. Han, J. Korean Soc. Radiol. Sci. 33, 173 (2010).Google Scholar
  9. [9]
    M. T. Bahreyni Toosi, M. Nazery and H. Zare, Iran. J. Radiat. Res. 4, 21 (2006).Google Scholar
  10. [10]
    European Union. European Commission, Office for Official Publications of the European Communities 16260 (1996).Google Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Kyo-Tae Kim
    • 1
  • Ye-Ji Heo
    • 1
  • Kyung-Min Oh
    • 1
  • Sang-Hee Nam
    • 1
    Email author
  • Sang-Sik Kang
    • 2
  • Ji-Koon Park
    • 2
  • Yong-Keun Song
    • 3
  • Sung-Kwang Park
    • 4
  1. 1.Department of Biomedical EngineeringInje UniversityGimhaeKorea
  2. 2.Department of Radiological ScienceInternational University of KoreaJinjuKorea
  3. 3.Medical Physics Research Team, Division of Heavy Ion Clinical ResearchKorea Institute of Radiological and Medical SciencesSeoulKorea
  4. 4.Department of Radiation Oncology, Busan Paik HospitalInje UniversityBusanKorea

Personalised recommendations