Advertisement

Journal of the Korean Physical Society

, Volume 68, Issue 1, pp 77–82 | Cite as

ZrTiO4 porous ceramics fabricated from particle-stabilized wet foam by direct foaming

  • Subhasree Bhaskar
  • Jung Gyu Park
  • Ik Jin KimEmail author
  • Byung Ho Kang
  • Tae Young Lim
Article

Abstract

Indent ZrTiO4 ceramics are widely used to manufacture electrical and optical devices. This study reveals an approach for the production of micro-porous ceramics consisting of TiO2 and ZrO2 by using a direct foaming method. ZrO2 particles in a colloidal suspension were partially hydrophobized by using propyl gallate as an amphiphile in a suitable pH range. Different mole ratios of the TiO2 suspension were added to the surface-modified ZrO2 suspension. The contact angle was found to be around 54° and the adsorption free energy to be 1.68 × 10−11 ∼ 9.2 × 10−12 J·A Laplace pressure of about 2.0 ∼ 2.2 mPa, corresponding to a wet foam stability of about 80 ∼ 85% was determined. A microstructure analysis was done after the dried samples had been sintered to obtain porous ceramics.

Keywords

ZrTiO4 porous ceramics Direct foaming Adsorption free energy Laplace pressure Wet foam stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Park, K. Cho and H. G. Kim, J. Korean Phys. Soc. 32, 929 (1998).Google Scholar
  2. [2]
    S. I. Hirano, T. Hayashi and A. Hattori, J. Am. Ceram. Soc. 74, 320 (1991).Google Scholar
  3. [3]
    I. J. Kim and G. Cao, J. Eur. Ceram. Soc. 22, 2632 (2002).Google Scholar
  4. [4]
    I. J. Kim, H. C. Kim, I. S. Han and C. G. Aneziris, Key Eng. Mat. 280-283, 1179 (2005).CrossRefGoogle Scholar
  5. [5]
    V. dos Santos, M. Zeni, J. M. Hohemberger and C. P. Bergmann, Rev. Adv. Mater. Sci. 24, 44 (2010).Google Scholar
  6. [6]
    Q. Liu, S. Zhang, D. Sun and J. Xu, Colloids and Surfaces A: Physicochem. Eng. Asp. 338, 40 (2009).CrossRefGoogle Scholar
  7. [7]
    J. H. Eom, Y. W. Kim and S. Raju, J. Asian Ceram. Soc. 1, 220 (2013).CrossRefGoogle Scholar
  8. [8]
    A. Pokhrel, J. G. Park, W. Zhao and I. J. Kim, J. Ceram. Pro. Res. 13, 20 (2012).Google Scholar
  9. [9]
    G. Kaptay, Colloids and Surfaces A: Physicochem. Eng. Asp. 282, 387 (2006).CrossRefGoogle Scholar
  10. [10]
    U. T. Gonzenabach, A. R. Studart, E. Tervoort and L. J. Gauckler, Langmuir 10, 983 (2006).Google Scholar
  11. [11]
    D. M. Alguacil, E. Tervoort, C. Cattin and L. J. Gauckler, J. Colloid Inter. Sci. 353, 512 (2011).CrossRefGoogle Scholar
  12. [12]
    T. S. Horozov, Curr. Opin. Colloid Interface Sci. 13, 134 (2008).CrossRefGoogle Scholar
  13. [13]
    O. Lyckfeldt and J. M. F. Ferreira, J. Eur. Ceram. Soc. 18, 131 (1998).CrossRefGoogle Scholar
  14. [14]
    T. N. Hunter, R. J. Pugh, G. V. Fanks and G. J. Jameson, Adv. Colloid Inter. Sci. 13, 57 (2008).CrossRefGoogle Scholar
  15. [15]
    A. R. Studart, J. Studer, L. Xu, K. Yoon, H. C. Shum and D. A. Weitz, Langmuir 27, 955 (2011).CrossRefGoogle Scholar
  16. [16]
    I. Aranberri, B. P. Binks, J. H. Clint and P. D. I. Fletcher, J. Porous Mater. 16, 429 (2009).CrossRefGoogle Scholar
  17. [17]
    A. Gajovic, A. Šantic, I. Djerdj, N. Tomašic, A. Moguš-Milankovic and D. S. Su, J. Alloy Compd. 479, 525 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Subhasree Bhaskar
    • 1
  • Jung Gyu Park
    • 1
  • Ik Jin Kim
    • 1
    Email author
  • Byung Ho Kang
    • 2
  • Tae Young Lim
    • 3
  1. 1.Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and EngineeringHanseo UniversitySeosanKorea
  2. 2.Hanyoung Foreign Language High SchoolSeoulKorea
  3. 3.Korea Institute of Ceramic Engineering and Technology (KICET)SeoulKorea

Personalised recommendations