Journal of the Korean Physical Society

, Volume 68, Issue 9, pp 1137–1141 | Cite as

Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

  • Byeong-il Lee
  • Woosub Song
  • Hyejin Kim
  • Hyun Wook KangEmail author


The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.


Doppler OCT Flow imaging Optical property Skin phantom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. G. Ho and C. L. Goh, J. Cutan. Aesthet. Surg. 8, 9 (2015).CrossRefGoogle Scholar
  2. [2]
    A. E. Ortiz and T. S. Alster, Dermatol. Surg. 38, 424 (2012).CrossRefGoogle Scholar
  3. [3]
    T. S. Alster, J. Am. Acad. Dermatol. 33, 69 (1995).CrossRefGoogle Scholar
  4. [4]
    V. Ross, G. Naseef, G. Lin, M. Kelly, N. Michaud, T. J. Flotte, J. Raythen and R. R. Anderson, Arch. Dermatol. 134, 167 (1998).CrossRefGoogle Scholar
  5. [5]
    R. K. Wang and L. An, Opt. Express 17, 8926 (2009).CrossRefADSGoogle Scholar
  6. [6]
    M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai and V. X. Yang, J. Biomed. Opt. 18, 50901 (2013).CrossRefGoogle Scholar
  7. [7]
    Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer and J. S. Nelson, Opt. Lett. 25, 114 (2000).CrossRefADSGoogle Scholar
  8. [8]
    S. Yazdanfar, A. M. Rollins and J. A. Izatt, Arch. Ophthalmol. 121, 235 (2003).CrossRefGoogle Scholar
  9. [9]
    C. R. Simpson, M. Kohl, M. Essenpreis and M. Cope, Phys. Med. Biol. 43, 2465 (1998).CrossRefGoogle Scholar
  10. [10]
    N. Honda, K. Ishii, T. Terada, T. Nanjo and K. Awazu, J. Biomed. Opt. 16, 058003 (2011).CrossRefADSGoogle Scholar
  11. [11]
    I. Fredriksson, M. Larsson and T. Stromberg, J. Biomed. Opt. 17, 047004 (2012).CrossRefADSGoogle Scholar
  12. [12]
    R. R. Gates and A. A. Zimmermann, J. Invest. Dermatol. 21, 339 (1953).CrossRefGoogle Scholar
  13. [13]
    Y. Bae, T. Son, J. Park and B. Jung, J. Biomed. Opt. 18, 25006 (2013).CrossRefGoogle Scholar
  14. [14]
    H. Kim, N. T. Hau, Y. G. Chae, B. I. Lee and H. W. Kang, Lasers Surg. Med. in press (2016).Google Scholar
  15. [15]
    E. N. Marieb and K. Hoehn, Human anatomy & physiology, 9th ed. (Pearson Education, New York, 2013).Google Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Byeong-il Lee
    • 1
  • Woosub Song
    • 1
  • Hyejin Kim
    • 2
  • Hyun Wook Kang
    • 2
    Email author
  1. 1.Medical Photonics Research CenterKorea Photonics Technology InstituteGwangjuKorea
  2. 2.Department of Biomedical EngineeringPukyong National UniversityBusanKorea

Personalised recommendations