Journal of the Korean Physical Society

, Volume 68, Issue 9, pp 1099–1108 | Cite as

Instrument resolution of the vertical-type cold-neutron reflectometer at HANARO

  • Jeong Soo Lee


The characteristics of the instrument resolution of the vertical-type cold-neutron reflectometer installed at HANARO, a research reactor in Korea, are estimated. In order to ascertain differences in the instrument resolution according to two scan modes, i.e., the fixed-slit and the variable-slit scan modes, for the measurement of the neutron reflectivity profile, we estimated the beam status of the instrument. Moreover, because the footprint effect and the limitation of the neutron beam window arise during measurements of the neutron reflectivity profiles and affect the instrument resolution, the causes of their occurrence were determined and a correction method was devised. The neutron reflectivity profiles of a SiO2 standard thin-film sample were measured in a Q range up to 0.2 Å-1 by using the two scan modes, and the sample structure was analyzed with the weighted least-squares fitting program Parratt32. During the process of the least-squares fitting of the neutron reflectivity profiles for the structural analysis, the method used to correct for the footprint effect and the limitation of neutron beam window was found to be reasonable. Also, the modified instrument resolutions in the two scan modes for the vertical-type cold-neutron reflectometer were found to be suitable.


Neutron reflectometer Instrument resolution Footprint effect Neutron beam window 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. F. Majkrzak, Acta. Phys. Pol. A 96, 81 (1999).CrossRefGoogle Scholar
  2. [2]
    H. Schmidt, E. Huger, S. Chakravarty J. Stahn, T. Gutberlet, U. Tieze and D. Latt, Adv. Eng. Matter. 11, 446 (2009).CrossRefGoogle Scholar
  3. [3]
    W. A. Hamilton, John B. Hayter and G. S. Smith, J. Neutron Res. 2, 1 (1994).CrossRefGoogle Scholar
  4. [4]
    G. Fragneto and A. Menelle, Eur. Phys. J. Plus 126, 11 (2011).CrossRefGoogle Scholar
  5. [5]
    C. F. Majkrzak and J. Penfold, Neutron News 21, 46 (2010).CrossRefGoogle Scholar
  6. [6]
    M. R. Fitzsimmons and R. Pynn, ICANS-XIII 13th Meeting of the International Collaboration on Advanced Neutron Sources (Paul Scherrer Institut, Swizerland, October 11-14, 1995).Google Scholar
  7. [7]
    M. Dubey, M. S. Jablin, P. Wang, M. Mocko and J. Majewski, Eur. Phys. J. Plus 126, 110 (2011).CrossRefGoogle Scholar
  8. [8]
    R. A. Campbell, H. P. Wackin, I. Sutton, R. Cubitt and G. Fragneto, Eur. Phys. J. Plus 126, 107 (2011).CrossRefGoogle Scholar
  9. [9]
    M. James, A. Nelson, A. Brule and J. C. Schulz, J. Neutron Res. 14, 91 (2006).CrossRefGoogle Scholar
  10. [10]
    H. Ambaye, R. Goyette, A. Parizzi and F. Kolse, Neutron News 19, 11 (2008).CrossRefGoogle Scholar
  11. [11]
    F. Ott and A. Menelle, Eur. Phys. J. Special Topics 167, 93 (2011)CrossRefADSGoogle Scholar
  12. [12]
    C. F. Majkrzak, S. K. Satiza, N. F. Berk, S. K. Kruger, J. A. Borchers, J. A. Dura, R. Ivko and K. V. O’donovan, Neutron News 12, 25 (2001).CrossRefGoogle Scholar
  13. [13]
    G. Fragneto-Cusani, J. Phys: Condens. Matter 13, 4073 (2001).Google Scholar
  14. [14]
    T. P. Russel, Mater. Sci. Rep. 5, 171 (1990).CrossRefGoogle Scholar
  15. [15]
    M. R. Fitzsimmons et al., J. Magn. Magn. Mater. 271, 103 (2004).CrossRefADSGoogle Scholar
  16. [16]
    G. P. Felcher, Physica B 267-268, 154 (1999).CrossRefADSGoogle Scholar
  17. [17]
    G. P. Felcher, J. Magn. Magn. Mater. 200, 741 (1999).CrossRefADSGoogle Scholar
  18. [18]
    B. J. Kirby, J. A. Brochers, X. Liu, Z. Ge, Y. J. Cho, M. Dobrowolska and J. K. Furdyna, Phys. Rev. B 76, 205316 (2007).CrossRefADSGoogle Scholar
  19. [19]
    J. S. Lee, New Phys. 63, 783 (2013).Google Scholar
  20. [20]
    S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).CrossRefADSGoogle Scholar
  21. [21]
    Glenn F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 1979), Chap. 17.Google Scholar
  22. [22]
    B. Hammouda, Proving Nanoscale Structures - The SANS Toolbox (National Institute of Science and Technology (NIST), Gaithersburg, 2011), Chap. 13.Google Scholar
  23. [23]
    J. S. Lee, New Phys. 62, 1332 (2012).Google Scholar
  24. [24]
    Reflectivity Resources (accessed Mar. 30, 2016).Google Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Neutron Instrument DivisionKorea Atomic Energy Research InstituteDaejeonKorea

Personalised recommendations