Journal of the Korean Physical Society

, Volume 67, Issue 5, pp 960–964 | Cite as

Accuracy in measuring the neutron star mass in gravitational wave parameter estimates for nonspinning compact binaries

  • Hee-Suk ChoEmail author
Brief Reports


In gravitational wave (GW) data analysis, the parameter estimate is performed to find the physical parameters of GW sources. The result of the parameter estimate is given by a posterior probability density function, and the measurement errors can be computed by using the Fisher matrix method. Using this method, we investigate the accuracy in estimates of neutron star (NS) masses (M NS) for GWs emitted from merging compact binaries. As GW sources, we consider nonspinning binaries in which the primary component is assumed to be a NS and the companion is assumed to be a NS or a stellar-mass black hole (BH). Adopting GW signals with a signal-to-noise ratio of 10 for Advanced LIGO (Laser Interferometer Gravitational wave Observatory) sensitivity, we calculate measurement errors (σ) of M NS. We find that the errors strongly depend on the mass ratio of the companion mass (M com) to the NS mass (M NS). For NS-NS binaries, the fractional errors (σ/M NS) are larger than 10% only in the symmetric mass region. For BH-NS binaries, the fractional errors tend to decrease with increasing mass ratio (M com/M NS), and the measurement accuracies are better than those for NS-NS binaries. In this case, the errors are always smaller than ~ 3%.


Gravitational wave Parameter estimate Fisher matrix Neutron star 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Aasi et al., (LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015).CrossRefADSGoogle Scholar
  2. [2]
    F. Acernese et al., Class. Quantum Grav. 32, 024001 (2015).CrossRefADSGoogle Scholar
  3. [3]
    H.-S. Cho, J. Korean Phys. Soc. 66, 1637 (2015).CrossRefADSGoogle Scholar
  4. [4]
    J. M. Lattimer and M. Prakash, Phy. Repts. 442, 109 (2007).CrossRefADSGoogle Scholar
  5. [5]
    M. Prakash, arXiv:1307.0397 (2013).Google Scholar
  6. [6]
    G. E. Brown, C.-H. Lee and M. Rho, Phys. Rev. Lett. 101, 091101 (2008).CrossRefADSGoogle Scholar
  7. [7]
    G. E. Brown, C.-H. Lee and M. Rho, Phy. Repts. 462, 1 (2008).CrossRefADSGoogle Scholar
  8. [8]
    C.-H. Lee, H.-S. Cho, Y. M. Kim and H.-Y. Park, J. Korean Phys. Soc. 59, 2118 (2011).CrossRefGoogle Scholar
  9. [9]
    P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J. W. T. Hessels, Nature 467, 1081 (2010).CrossRefADSGoogle Scholar
  10. [10]
    J. Antoniadis et al., Science 340, 448 (2013).CrossRefADSGoogle Scholar
  11. [11]
    C.-H. Lee and H.-S. Cho, Nuclear Physics A 928, 296 (2014).CrossRefADSGoogle Scholar
  12. [12]
    C.-H. Lee, G. E. Brown and R. A. M. J. Wijers, Astrophys. J. 575, 996 (2002).CrossRefADSGoogle Scholar
  13. [13]
    C.-H. Lee, H.-J. Park and G. E. Brown, Astrophys. J. 670, 741 (2007).CrossRefADSGoogle Scholar
  14. [14]
    K. G. Arun, B. R. Iyer, B. S. Sathyaprakash and P. A. Sundararajan, Phys. Rev. D 71, 084008 (2005).CrossRefADSGoogle Scholar
  15. [15]
    A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan and B. S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009).CrossRefADSGoogle Scholar
  16. [16]
    B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44, 3819 (1991).CrossRefADSGoogle Scholar
  17. [17]
    C. Cutler and E. É. Flanagan, Phys. Rev. D 49, 2658 (1994).CrossRefADSGoogle Scholar
  18. [18]
    E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).CrossRefADSGoogle Scholar
  19. [19]
    B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).CrossRefADSGoogle Scholar
  20. [20]
    J. Aasi et al., (LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).ADSGoogle Scholar
  21. [21]
    L. S. Finn, Phys. Rev. D 46, 5236 (1992).CrossRefADSGoogle Scholar
  22. [22]
    M. Vallisneri, Phys. Rev. D 77, 042001 (2008).CrossRefADSGoogle Scholar
  23. [23]
    P. Jaranowski and A. Królak, Phys. Rev. D 49, 1723 (1994).CrossRefADSGoogle Scholar
  24. [24]
    H.-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C.-H. Lee, Phys. Rev. D 87, 024004 (2013).CrossRefADSGoogle Scholar
  25. [25]
    I. Mandel, C. Berry, F. Ohme, S. Fairhurst and W. M. Farr, Class. Quantum Grav. 31, 155005 (2014).CrossRefADSGoogle Scholar
  26. [26]
    H.-S. Cho and C.-H. Lee, Class. Quantum Grav. 31, 235009 (2014).CrossRefADSGoogle Scholar
  27. [27]
    F. Özel, D. Psaltis, R. Narayan and J. E. McClintock, Astrophys. J. 725, 1918 (2010).CrossRefADSGoogle Scholar
  28. [28]
    W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel and V. Kalogera, Astrophys. J. 741, 103 (2011).CrossRefADSGoogle Scholar
  29. [29]
    M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D. Holz, T. Bulik and F. Pannarale, Astrophys. J. 806, 263 (2015).CrossRefADSGoogle Scholar
  30. [30]
    T. B. Littenberg, B. Farr, C. Coughlin, V. Kalogera and D. E. Holz, Astrophys. J. 807, L24 (2015).CrossRefADSGoogle Scholar
  31. [31]
    M. Hannam, D. A. Brown, S. Fairhurst, C. L. Fryer and I. W. Harry, Astrophys. J. 766, L14 (2013).CrossRefADSGoogle Scholar
  32. [32]
    I. Mandel, C. Haster, M. Dominik and K. Belczynski, MNRAS 450, L85 (2015).CrossRefADSGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Korea Institute of Science and Technology InformationDaejeonKorea

Personalised recommendations