Journal of the Korean Physical Society

, Volume 67, Issue 5, pp 837–842 | Cite as

Extended phase matching properties of periodically poled potassium titanyl phosphate isomorphs



We theoretically investigate the properties of extended phase-matching (EPM) for spontaneous parametric down-conversion (SPDC) in four kinds of potassium titanyl phosphate isomorphs (i.e., KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals). The technique is based on Type II 2nd-order nonlinear optic interaction in periodically poled ferroelectric domain structures, where a single photon with a frequency of 2ω generates a pair of photons with frequencies of ω that are orthogonally polarized with respect to each other. Under EPM, both quasi-phase matching (QPM) and group velocity (GV) matching between interacting waves are efficiently satisfied for the generation of a pair of polarization-entangled bi-photon states with frequencies of ω. Our simulation results show that the generated photon pairs have broad spectral bandwidths of over 69 - 95 nm in tele-communication bands, which are much broader than those of the typical non-EPM case (e.g., ~ sub-nm bandwidth when only the QPM, not the GV matching, is achieved). We will describe the EPM properties of the four kinds of KTP isomorphs in terms of interaction type, GV matching wavelength, domain poling period, and spectral bandwidth. We highlight that the KTP isomorphs have nice potential as suitable components for constituting new quantum information processing systems.


Polarization Frequency conversion Harmonic generation Optical frequency converters Nonlinear optical crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner and A. Zeilinger, Quantum Information (Springer, Berlin, 2001).MATHGoogle Scholar
  2. [2]
    P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu and A. Imamoglu, Science 290, 2282 (2000).CrossRefADSGoogle Scholar
  3. [3]
    J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth and J. G. Rarity, Phys. Rev. Lett. 99, 120501 (2007).CrossRefADSGoogle Scholar
  4. [4]
    M. Medic, J. B. Altepeter, M. A. Hall, M. Patel and P. Kumar, Opt. Lett. 35, 802 (2010).CrossRefADSGoogle Scholar
  5. [5]
    M. A. Horne, A. Shimony and A. Zeilinger, Phys. Rev. Lett. 62, 2209 (1989).CrossRefADSGoogle Scholar
  6. [6]
    Z. Y. Ou, X. Y. Zou, L. J. Wang and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).CrossRefADSGoogle Scholar
  7. [7]
    J. Brendel, N. Gisin, W. Tittel and H. Zbinden, Phys. Rev. Lett. 82, 2594 (1999).CrossRefADSGoogle Scholar
  8. [8]
    P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. H. Shih, Phys. Rev. Lett 75, 4337 (1995).CrossRefADSGoogle Scholar
  9. [9]
    F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri and R. Ursin, J. Opt. Soc. Am. B 31, 2068 (2014).CrossRefADSGoogle Scholar
  10. [10]
    R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, New York, 2008).Google Scholar
  11. [11]
    N. E. Yu, J. H. Ro, M. Cha, S. Kurimura and T. Taira, Opt. Lett. 27, 1046 (2002).CrossRefADSGoogle Scholar
  12. [12]
    I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).CrossRefADSGoogle Scholar
  13. [13]
    F. Konig and F. N. C. Wong, Appl. Phys. Lett. 84, 1644 (2004).CrossRefADSGoogle Scholar
  14. [14]
    V. G. Dmitriev, G. G. Gurzadyan and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed (Springer, Heidelberg, 1999).CrossRefGoogle Scholar
  15. [15]
    J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).CrossRefADSGoogle Scholar
  16. [16]
    R. Stoltzenberger and M. Scripsick, Proc. SPIE 3610, 23 (1999).CrossRefADSGoogle Scholar
  17. [17]
    V. Giovannetti, L. Maccone, J. H. Shapiro and F. N. C. Wong, Phys. Rev. Lett. 88, 183602 (2002).CrossRefADSGoogle Scholar
  18. [18]
    V. Giovannetti, L. Maccone, J. H. Shapiro and F. N. C. Wong, Phys. Rev. A 66, 043813 (2002).CrossRefADSGoogle Scholar
  19. [19]
    M. V. Pack, D. J. Armstrong and A. V. Smith, Appl. Opt. 43, 3319 (2004).CrossRefADSGoogle Scholar
  20. [20]
    T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer and R. S. Feigelson, Appl. Opt. 26, 2390 (1987).CrossRefADSGoogle Scholar
  21. [21]
    K. Fradkin, A. Arie, A. Skliar and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).CrossRefADSGoogle Scholar
  22. [22]
    K. Kato, E. Takaoka and N. Umemura, Jpn. J. Appl. Phys. 42, 6420 (2003).CrossRefADSGoogle Scholar
  23. [23]
    K. Kato, N. Umemura and E. Tanaka, Jpn. J. Appl. Phys. 36, L403 (1997).CrossRefADSGoogle Scholar
  24. [24]
    Y. S. Oseledchik, A. I. Pisarevsky, A. L. prosvirnin, V. N. Lopatko, L. E. Kholodenkov, E. F. Titkov, A. A. Demidovich and A. P. Shkadarevich, In Proceeding of Laser Optics Conference (Leningrad University Press, Leningrad, 1990).Google Scholar
  25. [25]
    K. J. Lee, C. S. Yoon and F. Rotermund, Jpn. J. Appl. Phys. 44, 1264 (2005).CrossRefADSGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Department of Applied PhysicsCollege of Applied Science, Kyung Hee UniversityYonginKorea

Personalised recommendations