Advertisement

Journal of the Korean Physical Society

, Volume 67, Issue 1, pp 209–217 | Cite as

Simulation study of dose enhancement in a cell due to nearby carbon and oxygen in particle radiotherapy

  • Jae Ik Shin
  • Ilsung Cho
  • Sungho Cho
  • Eun Ho Kim
  • Yongkeun Song
  • Won-Gyun Jung
  • SeungHoon Yoo
  • Dongho Shin
  • Se Byeong Lee
  • Myonggeun Yoon
  • S´ebastian Incerti
  • Moshi Geso
  • Anatoly B. Rosenfeld
Article
  • 44 Downloads

Abstract

The aim of this study is to investigate the dose-deposition enhancement due to alpha-particle irradiation in a cellular model by using the carbon and the oxygen chemical compositions. A simulation study was performed to study dose enhancement due to carbon and oxygen for a human cell where the Geant4 code used for alpha-particle irradiation of a cellular phantom. The characteristics of the dose enhancements based on the concentrations of carbon and oxygen in the nucleus and cytoplasm by the alpha-particle radiation was investigated and was compared with those obtained by gold and gadolinium. The results showed that both the carbon- and the oxygen-induced dose enhancements were more effective than those of gold and gadolinium. We found that the dose enhancement effect was more dominant in the nucleus than in the cytoplasm if the carbon or the oxygen were uniformly distributed in the whole cell. For the condition that the added chemical composition was inserted only into the cytoplasm, the effect of the dose enhancement in the nucleus was weak. We showed that high-stopping-power materials offer a more effective dose enhancement efficacy and suggest that carbon nanotubes and oxygenation are promising candidates for dose enhancement tools in particle therapy.

Keywords

Dose enhancement Nanoparticle CNT Alpha particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. S. Mello, H. Callisen, J. Winter, A. R. Kagan and A. Norman, Med. Phys. 10, 75 (1983).CrossRefGoogle Scholar
  2. [2]
    A. V. Mesa, A. Norman, T. D. Solberg, J. J. Demareo and J. B. Smathers, Phys. Med. Biol. 44, 1955 (1999).CrossRefGoogle Scholar
  3. [3]
    J. L. Robar, S. A. Roccio and M. A. Martin, Phys. Med. Biol. 47, 2433 (2002).CrossRefGoogle Scholar
  4. [4]
    J. F. Hainfeld, D. N. Stalkin and H. M. Smiloitz, Phys. Med. Biol. 49, 309 (2004).CrossRefGoogle Scholar
  5. [5]
    J. F. Hainfeld, D. N. Stalkin, T. M. Focella and H. M. Smiloitz, Br. J. Radiol. 79, 248 (2006).CrossRefGoogle Scholar
  6. [6]
    T. Kong et al., Small 4, 1537 (2008).CrossRefGoogle Scholar
  7. [7]
    W. N. Rahman, N. Bishara, T. Ackerly, C. F. He, P. Jackson, C. Wong, R. Davison and M. Geso, Nanomedicine 5, 136 (2009).CrossRefGoogle Scholar
  8. [8]
    J. C. Polf, L. F. Bronk, W. H. P. Driessen, W. Arap, R. Pasqualinl and M. Gillin, Appl. Phys. Lett. 98, 193702 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    A. R. Burke, R. N. Singh, D. L. Carroll, J. C. S Wood, R. B. D’Agostino Jr., P. M. Ajayan, F. M. Torti and S. V. Torti, Biomaterials 33, 2961 (2012).CrossRefGoogle Scholar
  10. [10]
    M. Diehn et al., Nature 458, 780 (2009).ADSCrossRefGoogle Scholar
  11. [11]
    S. Incerti, N. Gault, C. Habchi, J. L. Lefaix, Ph. Moretto, J. L. Poncy, T. Pouthier and H. Seznec, Radiat. Prot. Dosim. 122, 327 (2006).CrossRefGoogle Scholar
  12. [12]
    S. Incerti, H. Seznec, M. Simon, Ph. Barberet, C. Habchi and Ph. Moretto, Radiat. Prot. Dosim. 133, 2 (2009).CrossRefGoogle Scholar
  13. [13]
    Ph. Barberet, F. Vianna, M. Karamitros, T. Brun, N. Gordillo, Ph. Moretto, S. Incerti and H. Seznec, Phys. Med. Biol. 57, 2189 (2012).CrossRefGoogle Scholar
  14. [14]
    J. P. Alard, V. Bodez, A. Tchirkovet, M. L. N´enot, J. Arnold, S. Crespln, M. Rapp, P. Verrelle and C. Dlonet, Radiation Research 158, 650 (2002).Google Scholar
  15. [15]
    Z. Kuncic, H. L. Byrne, A. L. McNamara, S. Guatelli, W. Domanova and S. Incerti, Computational and mathematical methods in medicine 2012, 147252 (2012).MathSciNetCrossRefGoogle Scholar
  16. [16]
    S. W. Tsai, Y. Y. Chen and J. W. Liaw, Sensors 8, 2306 (2008).Google Scholar
  17. [17]
    K. M. Prise, G. Schettino, M. Folkard and K. D. Held, Lancet Oncology 6, 520 (2005).CrossRefGoogle Scholar
  18. [18]
    L. J. Wu, G. Randers-Pehrson, A. Xu, C. A. Waldren, C. R. Geard, Z. Yu and T. K. Hei, Proceedings of the National Academy of Sciences of the United States of America 96, 4959 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    C. Shao, M. Folkard, B. D. Michael and K. M. Prise, Proceedings of the National Academy of Sciences of the United States of America 101, 13495 (2004).ADSCrossRefGoogle Scholar
  20. [20]
    K. M. Prise and J. M. O’Sullivan, Nature Reviews Cancer 9, 351 (2009).Google Scholar
  21. [21]
    D. Averbeck, Mutation Research 687, 7 (2010).CrossRefGoogle Scholar
  22. [22]
    E. G. Wright, Mutation Research 687, 28 (2010).CrossRefGoogle Scholar
  23. [23]
    G. Schettino, S. T. Al Rashid and K. M. Prise, Mutation Research 704, 68 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • Jae Ik Shin
    • 1
  • Ilsung Cho
    • 1
  • Sungho Cho
    • 1
  • Eun Ho Kim
    • 1
  • Yongkeun Song
    • 1
  • Won-Gyun Jung
    • 1
  • SeungHoon Yoo
    • 1
  • Dongho Shin
    • 2
  • Se Byeong Lee
    • 2
  • Myonggeun Yoon
    • 3
  • S´ebastian Incerti
    • 4
  • Moshi Geso
    • 5
  • Anatoly B. Rosenfeld
    • 6
  1. 1.Division of Heavy Ion Clinical ResearchKorea Institute of Radiological and Medical ScienceSeoulKorea
  2. 2.Proton Therapy CenterNational Cancer CenterGoyangKorea
  3. 3.Department of Radiological ScienceKorea UniversitySeoulKorea
  4. 4.Université Bordeaux 1, CNRS/IN2P3Center d’EtudesNucléaires de Bordeaux-GradignanGradignanFrance
  5. 5.Discipline of Medical Radiations, School Medical SciencesRoyal Melbourne Institute of TechnologyBundooraAustralia
  6. 6.Center for Medical Radiation PhysicsUniversity of WollongongNew South WalesAustralia

Personalised recommendations