Journal of the Korean Physical Society

, Volume 67, Issue 12, pp 2070–2076 | Cite as

Electronic structure, phase transition, and elastic properties of ScC under high pressure

  • Yu-Xin Zhao
  • Jun ZhuEmail author
  • Yan-Jun Hao
  • Zi-Yuan Li
  • Long-Qing Chen
  • Guang-Fu Ji


The structural properties and the phase transition for scandium carbide (ScC) have been studied in NaCl (B1), CsCl (B2), ZB (B3), WZ (B4), NiAs (B81), WC (B h ), and Pmmn structures by using the pseudopotential plane-wave method in the framework of the density functional theory. Our theoretical results show that the most stable structure is the B1 phase, contrary to the result of Rahim et al. The phase transitions B1 → Pmmn and Pmmn → B2 are predicted at 83.7 and 109.7 GPa, respectively. At the same time, we find that the B3, B4, B81, and B h phases are not stable over the whole pressure range considered. In particular, the elastic constants of Pmmn-ScC under high pressure are obtained successfully. The effects of pressure on the elastic properties of B1-ScC and Pmmn-ScC are also predicted. The Debye temperatures Θ and the sound velocities of these two structures are estimated from the elastic constants, and by analyzing G/B, the brittle-ductile behavior of ScC is assessed. In addition, the density of states of B1-ScC at high pressures is also discussed.


First-principles calculations Structural phase transition Elastic properties High pressure ScC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
  2. [2]
    R, Freer (Ed.), The Physic and Chemistry of Carbides, Nitrides and Borides NATO ASI Series. E, vol. 185 (Kluwer, Dordrecht, 1990).Google Scholar
  3. [3]
    S. T. Oyama (Ed.), The Chemistry of Transition Metal Carbides and Nitrides (Blacklie Academic, Professional, London, 1996).Google Scholar
  4. [4]
    T. Das, S. Deb and A. Mookerjee, Phys. B 367, 6 (2005).CrossRefADSGoogle Scholar
  5. [5]
    P. Soni, G. Pagare, S. P. Sanyal and M. Rajagopalan. J. Phys. Chem. Solids 73, 873 (2012).CrossRefADSGoogle Scholar
  6. [6]
    R. B. Kaner, J. J. Gilman and S. H. Tolbert, Science 308, 1268 (2005).CrossRefGoogle Scholar
  7. [7]
    Y. F. Zhang, J. Q. Li, L. X. Zhao and S. C. Xiang, Solid State Commun. 121, 411 (2002).CrossRefADSGoogle Scholar
  8. [8]
    J. Maibam, B. I. Sharma, R. Bhattacharjee, R. K. Thapa and R. K. B. Singh, Phys. B 406, 4041 (2011).CrossRefADSGoogle Scholar
  9. [9]
    P. Soni, G. Pagare and S. P. Sanyal, J. Phys. Chem. Solids 72, 810 (2011).CrossRefADSGoogle Scholar
  10. [10]
    G. P. A Rahim and J. A. Rodriguez, Solid State Phenomena 194, 276 (2013).CrossRefGoogle Scholar
  11. [11]
    B. D. Sahoo, K. D. Joshi and S. C. Gupta, J. Appl. Phys. 114, 053516 (2013).CrossRefADSGoogle Scholar
  12. [12]
    A. Bouhemadou and R. Khenata, Phys. Lett. A 360, 339 (2006).CrossRefADSGoogle Scholar
  13. [13]
    L. Louail, D. Maouche, A. Roumili and F. A. Sahraoui, Mater. Lett. 58, 2975 (2004).CrossRefGoogle Scholar
  14. [14]
    Y. C. Wang, J. Lü, L. Zhu and Y. M. Ma, Phys. Rev. B 82, 094116 (2010).CrossRefADSGoogle Scholar
  15. [15]
    J. Sun, H. T. Wang, J. L. He and Y. J. Tian, Phys. Rev. B 71, 125132 (2005).CrossRefADSGoogle Scholar
  16. [16]
    M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter. 14, 2717 (2002).ADSGoogle Scholar
  17. [17]
    M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).CrossRefADSGoogle Scholar
  18. [18]
    J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  19. [19]
    B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen, J. Comp. Physiol. 131, 233 (1997).zbMATHCrossRefADSGoogle Scholar
  20. [20]
    D. C.Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).Google Scholar
  21. [21]
    J. H. Wang, J. Li, S. Yip, S. Phillpot and D. Wolf, Phys. Rev. B 52, 12627 (1995).CrossRefADSGoogle Scholar
  22. [22]
    T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85, 523 (1965).zbMATHMathSciNetCrossRefADSGoogle Scholar
  23. [23]
    F. Birch, Phys. Rev. 71, 809 (1947).zbMATHCrossRefADSGoogle Scholar
  24. [24]
    P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metal Park, OH, 1985).Google Scholar
  25. [25]
    E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, A. I. Lichtenstein and B. Johansson, J. Appl. Phys. 101, 123519 (2007).CrossRefADSGoogle Scholar
  26. [26]
    J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).zbMATHGoogle Scholar
  27. [27]
    R. Hill, Proc. Phys. Soc. London A 65, 349 (1952).CrossRefADSGoogle Scholar
  28. [28]
    A. F. Guillermet, J. Häglund and G. Grimvall, Phys. Rev. B 45, 11557 (1992).CrossRefADSGoogle Scholar
  29. [29]
    J. P.Watt, J. Appl. Phys. 50, 6290 (1979).CrossRefADSGoogle Scholar
  30. [30]
    E. Schreiber, O. L. Anderson and N. Soga, Elastic Constants and their Measurements (McGraw-Hill, New York, 1973).Google Scholar
  31. [31]
    S. F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  32. [32]
    Y. K. Wei, J. X. Yu, Z. G. Li, Y. Cheng and G. F. Ji, Phys. B 406, 4476 (2011).CrossRefADSGoogle Scholar
  33. [33]
    Y. J. Hao, H. S. Ren, B. Zhu, J. Zhu and J. Y. Qu, Solid State Sci. 17, 1 (2013).CrossRefADSGoogle Scholar
  34. [34]
    D. Connétable and O. Thomas, Phys. Rev. B. 79, 094101 (2009).CrossRefADSGoogle Scholar
  35. [35]
    O. L. Anderson, J. Phys. Chem. Solids. 24, 909 (1963).CrossRefADSGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • Yu-Xin Zhao
    • 1
  • Jun Zhu
    • 2
    Email author
  • Yan-Jun Hao
    • 2
  • Zi-Yuan Li
    • 2
  • Long-Qing Chen
    • 2
  • Guang-Fu Ji
    • 3
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.College of Physical Science and TechnologySichuan UniversityChengduChina
  3. 3.National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid PhysicsChinese Academy of Engineering PhysicsMianyangChina

Personalised recommendations