Journal of the Korean Physical Society

, Volume 67, Issue 12, pp 2026–2032

Electromagnetic metamaterial simulations using a GPU-accelerated FDTD method

  • Myung-Su Seok
  • Min-Gon Lee
  • SeokJae Yoo
  • Q-Han Park
Article

DOI: 10.3938/jkps.67.2026

Cite this article as:
Seok, MS., Lee, MG., Yoo, S. et al. Journal of the Korean Physical Society (2015) 67: 2026. doi:10.3938/jkps.67.2026
  • 127 Downloads

Abstract

Metamaterials composed of artificial subwavelength structures exhibit extraordinary properties that cannot be found in nature. Designing artificial structures having exceptional properties plays a pivotal role in current metamaterial research. We present a new numerical simulation scheme for metamaterial research. The scheme is based on a graphic processing unit (GPU)-accelerated finite-difference time-domain (FDTD) method. The FDTD computation can be significantly accelerated when GPUs are used instead of only central processing units (CPUs). We explain how the fast FDTD simulation of large-scale metamaterials can be achieved through communication optimization in a heterogeneous CPU/GPU-based computer cluster. Our method also includes various advanced FDTD techniques: the non-uniform grid technique, the total-field/scattered-field (TFSF) technique, the auxiliary field technique for dispersive materials, the running discrete Fourier transform, and the complex structure setting. We demonstrate the power of our new FDTD simulation scheme by simulating the negative refraction of light in a coaxial waveguide metamaterial.

Keywords

FDTD GPU Electromagnetic simulations Metamaterials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • Myung-Su Seok
    • 1
  • Min-Gon Lee
    • 1
  • SeokJae Yoo
    • 1
  • Q-Han Park
    • 1
  1. 1.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations