Journal of the Korean Physical Society

, Volume 67, Issue 12, pp 2026–2032 | Cite as

Electromagnetic metamaterial simulations using a GPU-accelerated FDTD method

  • Myung-Su Seok
  • Min-Gon Lee
  • SeokJae Yoo
  • Q-Han Park


Metamaterials composed of artificial subwavelength structures exhibit extraordinary properties that cannot be found in nature. Designing artificial structures having exceptional properties plays a pivotal role in current metamaterial research. We present a new numerical simulation scheme for metamaterial research. The scheme is based on a graphic processing unit (GPU)-accelerated finite-difference time-domain (FDTD) method. The FDTD computation can be significantly accelerated when GPUs are used instead of only central processing units (CPUs). We explain how the fast FDTD simulation of large-scale metamaterials can be achieved through communication optimization in a heterogeneous CPU/GPU-based computer cluster. Our method also includes various advanced FDTD techniques: the non-uniform grid technique, the total-field/scattered-field (TFSF) technique, the auxiliary field technique for dispersive materials, the running discrete Fourier transform, and the complex structure setting. We demonstrate the power of our new FDTD simulation scheme by simulating the negative refraction of light in a coaxial waveguide metamaterial.


FDTD GPU Electromagnetic simulations Metamaterials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Yee, IEEE Trans. 14, 302 (1966).zbMATHADSGoogle Scholar
  2. [2]
    S. Taflove and S. Hagness, The Finite-Difference Time- Domain Method, 3rd ed. (Artech House, Boston and London, 2005).Google Scholar
  3. [3]
    J. Choe, J. Kang, D. Kim and Q. Park, Opt. Express 20, 6521 (2012).CrossRefADSGoogle Scholar
  4. [4]
    S. Yoo and Q.-H. Park, Opt. Express 20, 16480 (2012).CrossRefADSGoogle Scholar
  5. [5]
    W. Choi, Q.-H. Park and W. Choi, Opt. Express 20, 20721 (2012).CrossRefADSGoogle Scholar
  6. [6]
    K.-H. Kim and Q.-H. Park, Sci. Rep. 3, 1062 (2013).ADSGoogle Scholar
  7. [7]
    J.-H. Kang and Q.-H. Park, Sci. Rep. 3, 1 (2013).Google Scholar
  8. [8]
    S. Yoo, M. Cho and Q.-H. Park, Phys. Rev. B 89, 161405 (2014).CrossRefADSGoogle Scholar
  9. [9]
    S. Yoo and Q.-H. Park, Phys. Rev. Lett. 114, 203003 (2015).CrossRefADSGoogle Scholar
  10. [10]
    S. E. Krakiwsky, L. E. Turner and M. M. Okoniewski, Proc. IEEE MTT-S Int. Microw. Symp. Dig. 2, 1033 (2004).Google Scholar
  11. [11]
    Nano Optics Lab. Scholar
  12. [12]
    KEMP project page in Sourceforge. http://kemp.sourceforge. net/.Google Scholar
  13. [13]
    K.-H. Kim, K. Kim and Q.-H. Park, Comput. Phys. Commun. 182, 1201 (2011).zbMATHCrossRefADSGoogle Scholar
  14. [14]
    K.-H. Kim and Q.-H. Park, Comput. Phys. Commun. 183, 2364 (2012).CrossRefADSGoogle Scholar
  15. [15]
    A. Vial and T. Laroche, J. Phys. D, Appl. Phys. 40, 7152 (2007).CrossRefADSGoogle Scholar
  16. [16]
    J. P. Berenger, J. Comput. Phys. 114, 185 (1994).zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. [17]
    J. A. Roden and S. D. Gedney, Microw. Opt. Technol. Lett. 27, 334 (2000).CrossRefGoogle Scholar
  18. [18]
    S. P. Burgos, R. deWaele, A. Polman and H. A. Atwater, Nat. Mater. 9, 407 (2010).CrossRefADSGoogle Scholar
  19. [19]
    P. B. Johnson and R. W. Christry, Phys. Rev. B 6, 4370 (1972).CrossRefADSGoogle Scholar
  20. [20]
    E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).Google Scholar
  21. [21]
    D. R. Smith, D. C. Vier, T. Koschny and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005).CrossRefADSGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • Myung-Su Seok
    • 1
  • Min-Gon Lee
    • 1
  • SeokJae Yoo
    • 1
  • Q-Han Park
    • 1
  1. 1.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations