Advertisement

Journal of the Korean Physical Society

, Volume 67, Issue 9, pp 1597–1602 | Cite as

Synthesis and thermoelectric properties of double-filled La1−z Nd z Fe4−x Co x Sb12 skutterudites

  • Kwon-Min Song
  • Dong-Kil Shin
  • Il-Ho KimEmail author
Article
  • 37 Downloads

Abstract

La1-z Nd z Fe4−x Co x Sb12 skutterudites were prepared by using melting, quenching, annealing, and hot pressing. The major phase was the skutterudite phase but small amounts of FeSb2 phases were observed. In addition, especially for the Co-compensated specimens (x = 0.5), (La,Nd)Sb2 phases existed. The electrical conductivity decreased with increasing temperature, showing a degenerate semiconductor behavior. The electrical conductivity decreased with increasing La and Co contents due to a decrease in the carrier concentration. All specimens showed p-type characteristics, having positive signs of the Seebeck coefficient and the Hall coefficient. The Seebeck coefficient increased with increasing temperature and reached a maximum value at 823 K. The power factor (PF) increased with decreasing Co content, and La0.75Nd0.25Fe4Sb12 showed a peak value of the PF = 3.0 m Wm-1 K2 at 823 K. The electronic thermal conductivity decreased with increasing Co content, and for a fixed Co content, the lattice thermal conductivity decreased with increasing filling fraction of Nd. The thermal conductivity increased due to bipolar conduction at temperatures above 623 K. The dimensionless figure of merit (ZT) had a maximum value of ZT = 0.82 at 823 K for La0.75Nd0.25Fe4Sb12.

Keywords

Thermoelectric Skutterudite Double filling Charge compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. E. Bell, Science 321,1457(2008).CrossRefADSGoogle Scholar
  2. [2]
    M. S. Toprak et al., Adv. Funct. Mater. 14,1189(2004).CrossRefGoogle Scholar
  3. [3]
    G. A. Slack, Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.Google Scholar
  4. [4]
    G. S. Nolas, G. A. Slack and S. B. Schujman, Semiconductors and Semimetals, vol. 69, edited by T. M. Tritt (Academic Press, San Diego, 2001), p. 255.CrossRefGoogle Scholar
  5. [5]
    A. Leithe-Jasper, W. Schnelle, H. Rosner, A. Rabis, M. Baenitz, A. A. Gippius, E. N. Morozova, J. A. Mydosh and Y. Grin, Phys. Rev. Lett. 91,037208(2013).CrossRefADSGoogle Scholar
  6. [6]
    A. Leithe-Jasper et al., Phys. Rev. B 70,214418(2004).CrossRefADSGoogle Scholar
  7. [7]
    P. F. Qui, J. Yang, R. H. Liu, X. Shi, X. Y. Huang, G. J. Snyder, W. Zhang and L. D. Chen, J. Appl. Phys. 109,063713(2011).CrossRefADSGoogle Scholar
  8. [8]
    R. Liu, J. Yang, X. Chen, X. Shi, L. D. Chen and C. Uher, Intermet. 19,1747(2010).CrossRefGoogle Scholar
  9. [9]
    D. R. Thompson, C. Liu, J. Yang, J. R. Salvador, D. B. Haddad, N. D. Ellison, R. A. Waldo and J. Yang, Acta Mater. 92,152(2015).CrossRefGoogle Scholar
  10. [10]
    T. Dahal, Q. Jie, Y. Lan, C. Guo and Z. Ren, Phys. Chem. Chem. Phys. 16,18170(2014).CrossRefGoogle Scholar
  11. [11]
    J. Y. Cho, Z. Ye, M. M. Tessema, R. A. Waldo, J. R. Salvador, J. Yang, W. Cai and H. Wang, Acta Mater. 60,2104(2012).CrossRefGoogle Scholar
  12. [12]
    Q. M. Lu, J. X. Zhang, X. Zhang, Y. Q. Liu, D. M. Liu and L. Zhou, J. Appl. Phys. 98,106107(2005).CrossRefADSGoogle Scholar
  13. [13]
    R. Liu, J. Yang, X. Chen, X. Shi, L. Chen and C. Uher, Intermet. 19,1747(2011).CrossRefGoogle Scholar
  14. [14]
    G. P. Meisner, D. T. Morelli, S. Hu, J. Yang and C. Uher, Phys. Rev. Lett. 80,3551(1998).CrossRefADSGoogle Scholar
  15. [15]
    H. Li, X. F. Tang, Q. J. Zhang and C. Uher, Appl. Phys. Lett. 94,102114(2009).CrossRefADSGoogle Scholar
  16. [16]
    X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen and W. Zhang, Appl. Phys. Lett. 92,182101(2008).CrossRefADSGoogle Scholar
  17. [17]
    S. Q. Bai, Y. Z. Pei, L. D. Chen, W. Q. Zhang, X. Y. Zhao and J. Yang, Acta Mater. 57,3135(2009).CrossRefGoogle Scholar
  18. [18]
    Q. Jie, H. Wang, W. S. Liu, H. Wang, G. Chen and Z. F. Ren, Phys. Chem. Chem. Phys. 15,6809(2013).CrossRefGoogle Scholar
  19. [19]
    T. Dahal, Q. Jie, Y. C. Lan, C. F. Guo and Z. F. Ren, Phys. Chem. Chem. Phys. 16,18170(2014).CrossRefGoogle Scholar
  20. [20]
    G. Rogl, A. Grystiv, M. Flambigl, E. Bauer, P. Rogl, M. Zehetbauer and Y. Gelbstein, J. Alloy. Compd. 537,242(2012).CrossRefGoogle Scholar
  21. [21]
    T. Dahal, Q. Jie, W. S. Liu, K. Dahal, C. Guo, Y. C. Lan and Z. F. Ren, J. Alloy. Compd. 623,103(2015).CrossRefGoogle Scholar
  22. [22]
    Y. C. Lan, A. J. Minnich, G. Chen and Z. F. Ren, Adv. Funct. Mater. 20,357(2010).CrossRefGoogle Scholar
  23. [23]
    C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 152.Google Scholar
  24. [24]
    R. D. Shannon, Acta Cryst. A 32,751(1976).CrossRefGoogle Scholar
  25. [25]
    K. H. Park, I. H. Kim, S. M. Choi, Y. S. Lim, W. S. Seo and K. H. Kim, Jpn. J. Appl. Phys. 52, 10MB18 (2013).CrossRefGoogle Scholar
  26. [26]
    D. K. Shin and I. H. Kim, J. Electron. Mater. (in press), DOI: 10.1007/s11664-015-3967-2.Google Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations