Journal of the Korean Physical Society

, Volume 67, Issue 9, pp 1529–1532 | Cite as

Restricted solid-on-solid model in d = 2 + 1 dimension with various restriction parameters N

  • Jin Min KimEmail author


A restricted solid-on-solid model is investigated with various height restriction parameters N in 2 + 1 dimension to determine the critical exponents for the surface roughness more accurately. The interface width W(t) grows as t β at the beginning and becomes saturated at L α for tL z , where z is the dynamic exponent. Through a large-scale numerical simulation of a system with size L = 16384, β ≈ 0.248 ± 0.002 and α ≈ 0.400 ± 0.004 are obtained with N = 3, where W(t) is reasonably larger than the unit height. Our result seems to be consistent with the conjecture β = 1/4. z ≈ 1.61 is estimated from the relation \(z = \tfrac{\alpha } {\beta }\), which satisfies the scaling relation α+z = 2 very well.


Restricted solid-on-solid model Surface roughness Growth exponent Kardar-Parisi-Zhang equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dynamics of Fractal Surfaces, edited by F. Family and T. Vicsek (World Scientific, Singapore, 1991).Google Scholar
  2. [2]
    A-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).CrossRefzbMATHGoogle Scholar
  3. [3]
    J. M. Burgers, The Nonlinear Diffusion Equation (Reidel, Boston, 1974).CrossRefzbMATHGoogle Scholar
  4. [4]
    M. J. Vold, J. Colloid Sci. 14, 168 (1959).CrossRefGoogle Scholar
  5. [5]
    T. Hwa, Phys. Rev. Lett. 69, 1552 (1992).CrossRefADSGoogle Scholar
  6. [6]
    D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).CrossRefADSGoogle Scholar
  7. [7]
    M. Kardar and Y. C. Zhang, Phys. Rev. Lett. 58, 2087 (1987).CrossRefADSGoogle Scholar
  8. [8]
    J. M. Kim, M. A. Moore and A. J. Bray, Phys. Rev. A 44, 2345, (1991)CrossRefADSGoogle Scholar
  9. [8a]
    J. M. Kim, A. J. Bray and M. A. Moore, Phys. Rev. A 44, R4782, (1991).Google Scholar
  10. [9]
    M. Kardar, G. Parisi and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986).CrossRefADSzbMATHGoogle Scholar
  11. [10]
    F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).CrossRefADSGoogle Scholar
  12. [11]
    J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989)CrossRefADSGoogle Scholar
  13. [11a]
    J. M. Kim, J. M. Kosterlitz and T. Ala-Nissila, J. Phys. A 24, 5569 (1991).CrossRefADSGoogle Scholar
  14. [12]
    M. Lässig and H. Kinzelbach, Phys. Rev. Lett. 78, 903 (1997).CrossRefADSGoogle Scholar
  15. [13]
    B. M. Forrest and L-H. Tang, Phys. Rev. Lett. 64, 1405 (1990).CrossRefADSGoogle Scholar
  16. [14]
    J. Kelling and G. Odor, Phys. Rev. E 84, 061150 (2011).CrossRefADSGoogle Scholar
  17. [15]
    G. Ódor, J. Kelling and S. Gemming, Phys. Rev. E 89, 032146 (2014).CrossRefADSGoogle Scholar
  18. [16]
    G. Ódor, B. Liedke and K.-H. Heinig, Phys. Rev. E 81, 031112 (2010).CrossRefADSGoogle Scholar
  19. [17]
    A. Pagnani and G. Parisi, Phys. Rev. E 87, 010102(R) (2013).Google Scholar
  20. [18]
    M. Schwartz and E. Perlsman, Phys. Rev. E 85, 050103(R) (2012).Google Scholar
  21. [19]
    T. Halpin-Healy, Phys. Rev. Lett. 109, 170602 (2012).CrossRefADSGoogle Scholar
  22. [20]
    J. P. Doherty, M. A. Moore, J. M. Kim and A. J. Bray Phys. Rev. Lett. 72, 2041 (1994).CrossRefADSzbMATHGoogle Scholar
  23. [21]
    L. Canet, H. Chate, B. Delamotte and N. Wschebor, Phys. Rev. Lett. 104, 150601 (2010).CrossRefADSGoogle Scholar
  24. [22]
    J. M. Kim and S.-W. Kim, Phys. Rev. E 88, 034102 (2013).CrossRefADSGoogle Scholar
  25. [23]
    S.-W. Kim and J. M. Kim, J. Stat. Mech. P07005 (2014)Google Scholar
  26. [23a]
    J. M. Kim and S.-W. Kim, J. Stat. Mech P07010 (2015).Google Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Department of Physics and Research Institute for the Origin of matter and the Evolution of galaxiesSoongsil UniversitySeoulKorea

Personalised recommendations