Advertisement

Journal of the Korean Physical Society

, Volume 66, Issue 6, pp 972–977 | Cite as

Thickness and temperature dependences of the degradation and the breakdown for MgO-based magnetic tunnel junctions

  • Jung-Min Lee
  • Yun-Heub Song
Article

Abstract

The reliability of a magnetic tunnel junction (MTJ) with an MgO tunnel barrier was evaluated. In particular, various voltage tests were used to investigate the effects of the barrier thickness and the temperature on the resistance drift. We compared the resistance change during a constant voltage stress (CVS) test and confirmed a trap/detrap phenomenon during the interval stress for different barrier thicknesses and temperatures. The resistance drift representing degradation and the time to breakdown (T BD ) representing the breakdown characteristic were better for a thicker barrier and lower temperature, but were worse for a thinner barrier and a higher temperature. The results suggest that breakdown and degradation due to trap generation strongly depend on both the barrier thickness and the temperature. Furthermore, as the TBD varies at steady rates with changing barrier thickness, temperature, and electric field, we assume that a MTJ with an adnormal thin layer of MgO can be screened effectively based on the predicted T BD . As a result, the barrier thickness and the temperature are very important in determining the reliability of a MTJ, and this study is expected to be helpful in understanding the degradation and the breakdown of a MTJ.

Keywords

Magnetic tunnel junction MgO Degradation Breakdown 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Hosomi et al., in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 5–7, 2005), p. 459.Google Scholar
  2. [2]
    R. Beach et al., in Proceedings of the IEDM Technical Digest (San Francisco, USA, Dec. 15–17, 2008), p. 1.Google Scholar
  3. [3]
    E. Chen et al., IEEE Trans. Magn. 46, 1873 (2010).CrossRefADSGoogle Scholar
  4. [4]
    T. Kawahara, K. Ito, R. Takemura and H. Ohno, Microelectron. Reliab. 52, 613 (2012).CrossRefGoogle Scholar
  5. [5]
    J. Akerman et al., IEEE Trans. Device Mater. Reliab. 4, 428 (2004).CrossRefGoogle Scholar
  6. [6]
    C. Yoshida, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Stoh, M. Aoki, S. Umehara, M. Satoh and K. Kobayashi, in Proceedings of the 44th IEEE International Reliability Physics Symposium (San Jose, USA, March 26–30, 2006), p. 697.Google Scholar
  7. [7]
    S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Mater. 3, 862 (2004).CrossRefADSGoogle Scholar
  8. [8]
    A. A. Khan, J. Schmalhorst, A. Thomas, O. Schebaum and G. Reiss, J. Appl. Phys. 103, 123705 (2008).CrossRefADSGoogle Scholar
  9. [9]
    D. V. Dimitrov, Zheng Gao, Xiaobin Wang, Wonjoon Jung, Xiaohua Lou and Olle G. Heinonen, Appl. Phys. Lett. 94, 123110 (2009).CrossRefADSGoogle Scholar
  10. [10]
    S. Amara-Dababi, H. Bea, R. C. Sousa, C. Baraduc and B. Dieny, Appl. Phys. Lett. 102, 052404 (2013).CrossRefADSGoogle Scholar
  11. [11]
    C. Yoshida, M. Kurasawa, Y. M. Lee, K. Tsunoda, M. Aoki and Y. Sugiyama, in Proceedings of the 47th IEEE International Reliability Physics Symposium (Montreal, Canada, April 26–30, 2009), p. 139.Google Scholar
  12. [12]
    K. Hosotani et al., in Proceedings of the 45th IEEE International Reliability Physics Symposium (Phoenix, USA, April 15–19, 2007), p. 650.Google Scholar
  13. [13]
    E. Cartier and A. Kerber, in Proceedings of the 47th IEEE International Reliability Physics Symposium (Montreal, Canada, April 26–30, 2009), p. 486.Google Scholar
  14. [14]
    C. S. Jenq, T. R. Ranganath, C. H. Huang, H. S. Jones and T. L. Chang, in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 7–9, 1981), p. 388.Google Scholar
  15. [15]
    M. S. Liang and C. Hu, in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 7–9, 1981), p. 396.Google Scholar
  16. [16]
    J. Zhang and R. M. White, J. Appl. Phys. 83, 6512 (1998).CrossRefADSGoogle Scholar
  17. [17]
    J. Wingbermuhle, S. Stein and H. Kohlstedt, J. Appl. Phys. 92, 7261 (2002).CrossRefADSGoogle Scholar
  18. [18]
    J. W. McPherson and H. C. Mogul, J. Appl. Phys. 84, 1513 (1998).CrossRefADSGoogle Scholar
  19. [19]
    I. C. Chen, S. E. Holland and C. Hu, IEEE Trans. Electron Devices 32, 413 (1985).CrossRefADSGoogle Scholar
  20. [20]
    P. S. Ku and C. Young, in Proceedings of the 44th IEEE International Reliability Physics Symposium (San Jose, USA, March 26–30, 2006), p. 437.Google Scholar
  21. [21]
    R. Degraeve, B. Govoreanu, B. Kaczer, J. V. Houdt and G. Groeseneken, in Proceedings of the 43th IEEE International Reliability Physics Symposium (San Jose, USA, April 17–21, 2005), p. 360.Google Scholar
  22. [22]
    S. Kamohara, D. Park and C. Hu, in Proceedings of the 36th IEEE International Reliability Physics Symposium (Reno, USA, March 31–April 2, 1998), p. 57.Google Scholar
  23. [23]
    J. M. Lee, G. H. Kil, G. H. Lee, C. M. Choi and Y. H. Song, J. Korean Phys. Soc. 64, 1144 (2014).CrossRefADSGoogle Scholar
  24. [24]
    R. Degraeve, G. Groeseneken, R. Bellens, M. Depas and H.E. Maes, in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 10–13, 1995), p. 863.Google Scholar
  25. [25]
    M. Klaua, D. Ullmann, J. Barthel, W. Wulfhekel, J. Kirschner, R. Urban, T. L. Monchesky, J. F. Cochran and B. Heinrich, Appl. Phys. Rev. B 64, 134411 (2001).ADSGoogle Scholar
  26. [26]
    E. Vincent, N. Revil, C. Papadas and G. Ghilbaudo, Microelectron. Reliab. 36, 1643 (1996).CrossRefGoogle Scholar
  27. [27]
    T. Andre et al., in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (San Jose, USA, Sept. 22–25, 2013), p. 1.Google Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Department of Electronics and Computer EngineeringHanyang UniversitySeoulKorea

Personalised recommendations