Advertisement

Journal of the Korean Physical Society

, Volume 66, Issue 4, pp 700–712 | Cite as

System identification of the Arabidopsis plant circadian system

  • Mathias Foo
  • David E. Somers
  • Pan-Jun Kim
Article

Abstract

The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network’s architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

Keywords

Complex systems Biological networks Nonlinear dynamics Circadian systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. H. Nagel and S. A. Kay, Current Biology 22, R648 (2012).CrossRefGoogle Scholar
  2. [2]
    J. C. Leloup and A. Goldbeter, Proceedings of the National Academy Sciences of the United States of America 100, 7051 (2003).CrossRefADSGoogle Scholar
  3. [3]
    J. C. Dunlap, J. L. Loros and P. J. DeCoursey, Chronobiology: Biological time keeping (Sinauer Associate, Sunderland, 2003).Google Scholar
  4. [4]
    D. A. Dean II,_D. B. Forger and E. B. Klerman, PLoS Computational Biology 5, 1 (2009).CrossRefGoogle Scholar
  5. [5]
    Y-Y. Liu, J-J. Slotine and A-L. Barabasi, Nature 473, 167 (2011).CrossRefADSGoogle Scholar
  6. [6]
    S. P. Cornelius, W. L. Kath and A. E. Motter, Nature Communications 4, 1 (2013).CrossRefGoogle Scholar
  7. [7]
    S. Wuchty, Proceedings of the National Academy Sciences of the United States of America 111, 7156 (2014).CrossRefADSGoogle Scholar
  8. [8]
    C. R. McClung, The Plant Cell 18, 792 (2006).CrossRefGoogle Scholar
  9. [9]
    A. Pokhilko, A. P. Fernandez, K. D. Edwards, M. M. Southern, K. J. Halliday and A. J. Millar, Molecular Systems Biology 8, 1 (2012).CrossRefGoogle Scholar
  10. [10]
    A. Pokhilko, P. Mas and A. J. Millar, BMC Systems Biology 7, 1 (2013).CrossRefGoogle Scholar
  11. [11]
    N. Budjoso and S. J. Davis, Frontiers in Plant Science 4, 1 (2013).Google Scholar
  12. [12]
    K. Fogelmark and C. Troein, PLoS Computational Biology 10, 1 (2014).CrossRefGoogle Scholar
  13. [13]
    L. Ljung, System Identification: Theory for the User, 2nd Edition (Prentice Hall, Englewood Cliffs, 1999).Google Scholar
  14. [14]
    J. C. W. Locke, A. J. Millar and M. S. Turner, Journal of Theoretical Biology 234, 383 (2005).CrossRefMathSciNetGoogle Scholar
  15. [15]
    D. A. Nusinow, A. Helfer, E. E. Hamilton, J. J. King, T. Imaizumi, T. F. Schultz, E. M. Farre and S. A. Kay, Nature 475, 398 (2011).CrossRefGoogle Scholar
  16. [16]
    W-Y. Kim, S. Fujiwara, S-S. Suh, J. Kim, Y. Kim, L. Han, K. David, J. Putterill, H. G. Nam and D. E. Somers, Nature 449, 356 (2007).CrossRefADSGoogle Scholar
  17. [17]
    P. Young, Environmental Modeling and Software 13, 105 (1998).CrossRefADSGoogle Scholar
  18. [18]
    M. Foo, S. K. Ooi and E. Weyer, IEEE Transactions on Control Systems Technology 22, 618 (2014).CrossRefGoogle Scholar
  19. [19]
    A. Matsushika, S. Makino, M. Kojima and T. Mizuno, Plant Cell Physiology 41, 1002 (2000).CrossRefGoogle Scholar
  20. [20]
    T. C Mockler, T. P. Michael, H. D. Priest, R. Shen, C. M. Sullivan, S. A. Given, C. McEntree, S. A. Kay and J. Chong, Cold Spring Harbor Symposium on Quantitative Biology 72, 353 (2007).CrossRefGoogle Scholar
  21. [21]
    J-Y. Kim, H-R. Song, B. L. Taylor and I. A. Carre, The EMBO Journal 22, 935 (2003).CrossRefGoogle Scholar
  22. [22]
    N. Nakamichi, A. Matsushika, T. Yamashino, T. Mizuno, Plant Cell Physiology 44, 360 (2003).CrossRefGoogle Scholar
  23. [23]
    N. Nakamichi, T. Kiba, R. Henriques, T. Mizuno, N-H. Chua and H. Sakakibara, Plant Cell 22, 594 (2010).CrossRefGoogle Scholar
  24. [24]
    H. d’A. Heck, Journal of the American Chemical Society 93, 23 (1971).CrossRefGoogle Scholar
  25. [25]
    K. R. Sanft, D. T. Gillespie and L. R. Petzold, IET Systems Biology 5, 58 (2011).CrossRefGoogle Scholar
  26. [26]
    E. M. Farre, S. L. Harmer, F. G. Harmon, M. J. Yanovsky and S. A. Kay, Current Biology 15, 47 (2005).CrossRefGoogle Scholar
  27. [27]
    N. Dalchau, K. E. Hubbard, F. C. Robertson, C. T. Hotta, H. M. Briggs, G-B. Stan, J. M. Goncalves and A. A. R. Webb, Proceedings of the National Academy Sciences of the United States of America 107, 13171 (2010).CrossRefADSGoogle Scholar
  28. [28]
    E. Herrero, E. Kolmos, N. Budjoso, Y. Yuan, M. Wang, M. C. Berns, H. Uhlworm, G. Coupland, R. Saini, M. Jaskolski, A. Webb, J. Goncalves and S. J. Davis, The Plant Cell 23, 428 (2012).CrossRefGoogle Scholar
  29. [29]
    M. N. Zeilinger, E. M. Farre, S. R. Taylor, S. A. Kay and F. J. Doyle III, Molecular Systems Biology 58, 1 (2006).Google Scholar
  30. [30]
    U. Alon, M. G. Surette, N.Barkai and S. Leibler, Nature 397, 168 (1999).Google Scholar
  31. [31] G. von Dassow
    E. Meri, E. M. Munro and G. M. Odell, Nature 406, 188 (2000).CrossRefADSGoogle Scholar
  32. [32]
    J. A. Nelder and R. Mead, Computer Journal 7, 1 (1965).CrossRefGoogle Scholar
  33. [33]
    B. Schwanhausser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen and M. Selbach, Nature 473, 337 (2011).CrossRefADSGoogle Scholar
  34. [34]
    https://www.apctp.org/upload/jrg/jrgid 11 Supplementary Material MF DES PJK.pdf.Google Scholar
  35. [35]
    S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering (Addison-Wesley Publishing Company, Massachusetts, 1994).Google Scholar
  36. [36]
    D. E. Somers, W.-Y. Kim and R. Geng, Plant Cell 101, 319 (2004).Google Scholar
  37. [37]
    T. Mizoguchi, K. Wheatley, Y. Hanzawa, L. Wright, M. Mizoguchi, H. R. Song, I. A. Carre and G. Coupland, Developmental Cell 2, 629 (2002).CrossRefGoogle Scholar
  38. [38]
    P. Mas, D. Alabadi, M. J. Yanovsky, T. Oyama and S. A. Kay, Plant Cell 15, 223 (2003).CrossRefGoogle Scholar
  39. [39]
    D. E. Somers, T. F. Schultz, M. Milnamow and S. A. Kay, Cell 101, 319 (2000).CrossRefGoogle Scholar
  40. [40]
    E. L. Martin-Tyron, J. A. Kreps and S. L. Harmer, Plant Physiology 143, 473 (2007).CrossRefGoogle Scholar
  41. [41]
    P. D. Gould, J. C. Locke, C. Larue, M. M. Southern, S. J. Davis, S. Hanano, R. Moyle, R. Milich, J. Putterill, A. J. Millar and A. Hall, Plant Cell 18, 1177 (2006).CrossRefGoogle Scholar
  42. [42]
    T.-W. Ko and G. B. Ermentrout, Physical Review E 79, 016211 (2009).CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    H. Kook, S.-G. Lee, D.-U. Hwang and S. K. Han, J. Korean Phy. Soc. 50, 341 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Asia Pacific Center for Theoretical Physics (APCTP)PohangKorea
  2. 2.Department of Molecular GeneticsThe Ohio State UniversityColumbusUSA
  3. 3.Department of PhysicsPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations