Skip to main content
Log in

First-principles calculations of the lattice instability and the symmetry-lowering modulation of PtSi

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have investigated the vibrational properties of orthorhombic PtSi by performing first-principles calculations. The calculated phonon band structure shows unstable phonon modes around the Γ-point. The ionic displacement vectors associated with the unstable Γ-point phonon mode suggest a structural modulation to a lower-symmetry phase, which was confirmed by comparing the theoretical equations of states of the modulated (P212121) and the unmodulated (Pnma) PtSi. The symmetry-reduced modulated orthorhombic PtSi shows a phonon band gap. We attribute the origin of the phonon band gap to the separation of the low-frequency Pt phonon modes and the high-frequency Si phonon modes due to the large atomic mass difference between Pt and Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. J. Graeber, R. J. Baughman and B. Morosin, Acta Crystallogr. B 29, 1991 (1973).

    Article  Google Scholar 

  2. K. Göransson, I. Engström and B. Noläng, J. Alloys Compd. 219, 107 (1995).

    Article  Google Scholar 

  3. C. Canali, F. Catellani, G. Ottaviani and M. Prudenziati, Appl. Phys. Lett. 33, 187 (1978).

    Article  ADS  Google Scholar 

  4. T. Stark, H. Grünleitner, M. Hundhausen and L. Ley, Thin Solid Films 358, 73 (2000).

    Article  ADS  Google Scholar 

  5. K. L. Kavanagh, M. C. Reuter and R. M. Tromp, J. Cryst. Growth 173, 393 (1997).

    Article  ADS  Google Scholar 

  6. L. P. Wang, J. R. Yang and J. Hwang, J. Appl. Phys. 74, 6251 (1993).

    Article  ADS  Google Scholar 

  7. C. Kumpf, R. Nicular and E. Burkel, J. Appl. Crystallogr. 30, 1016 (1997).

    Article  Google Scholar 

  8. A. Wawro, S. Suto and A. Kasuya, Phys. Rev. B 72, 205302 (2005).

    Article  ADS  Google Scholar 

  9. O. Beckstein, J. E. Klepeis, G. L. W. Hart and O. Pankratov, Phys. Rev. B 63, 134112 (2001).

    Article  ADS  Google Scholar 

  10. J. E. Klepeis, O. Beckstein, O. Pankratov and G. L. W. Hart, Phys. Rev. B 64, 155110 (2001).

    Article  ADS  Google Scholar 

  11. H. Koc, E. Deligöz and A. M. Mamedov, Philos. Mag. 91, 3093 (2011).

    Article  ADS  Google Scholar 

  12. N. Franco, J. E. Klepeis, C. Bostedt, T. Van Buuren, C. Heske, O. Pankratov, T. A. Callcott, D. L. Ederer and L. J. Terminello, Phys. Rev. B 68, 045116 (2003).

    Article  ADS  Google Scholar 

  13. M. K. Niranjan, S. Zollner, L. Kleinman and A. A. Demkov, Phys. Rev. B 73, 195332 (2006).

    Article  ADS  Google Scholar 

  14. H. Bentmann, A. A. Demkov, R. Gregory and S. Zollner, Phys. Rev. B 78, 205302 (2008).

    Article  ADS  Google Scholar 

  15. A. Slepko and A. A. Demkov, Phys. Rev. B 85, 035311 (2012).

    Article  ADS  Google Scholar 

  16. D. Connétable and O. Thomas, Phys. Rev. B 79, 094101 (2009).

    Article  ADS  Google Scholar 

  17. L. Vočadlo, I. G. Wood and D. P. Dobson, J. Appl. Crystallogr. 45, 186 (2012).

    Article  Google Scholar 

  18. H. T. Weaver, R. C. Knauer, R. K. Quinn and R. J. Baughman, Solid State Commun. 11, 453 (1972).

    Article  ADS  Google Scholar 

  19. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  20. W. Kohn and L. J. Sham, Phys. Rev. 140, B1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  25. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  26. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  27. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  28. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  29. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Togo, F. Oba and I. Tanaka, Phys. Rev. B 78, 134106 (2008).

    Article  ADS  Google Scholar 

  31. M. I. Aroyo, J. M. Perz-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov and H. Wondratschek, Z. Kristallogra. 221, 15 (2006).

    Article  Google Scholar 

  32. K. M. Rabe and P. Ghosez, in Physics of Ferroelectrics: A Modern Perspective, edited by K. M. Rabe, C. H. Ahn and J.-M. Triscone (Springer-Verlag, Berlin, 2007), p. 117.

  33. We have examined the equation of states and the phonon dispersion relation for the orthorhombic Pnma NiSi to negate the P212121 structural instability in NiSi.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H. First-principles calculations of the lattice instability and the symmetry-lowering modulation of PtSi. Journal of the Korean Physical Society 66, 612–616 (2015). https://doi.org/10.3938/jkps.66.612

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.612

Keywords

Navigation