Advertisement

Journal of the Korean Physical Society

, Volume 66, Issue 10, pp 1637–1641 | Cite as

Search and parameter estimate in gravitational wave data analysis and the fisher matrix

  • Hee-Suk Cho
Brief Reports

Abstract

By means of next-generation ground-based gravitational wave (GW) detectors, real GW signals will be directly detected within a few years. In the data analysis of GWs emitted from merging compact binaries, the matched filtering method is employed in the search pipeline to identify GW events. Once a detection is made in the search, the parameter estimate seeks the physical parameters of the GWsource. This pipeline repeatedly performs overlap computations by generating theoretical waveforms and matching those to the detector data based on Monte Carlo simulations. In this work, we briefly review the search and the parameter estimate in GW data analysis. We also introduce the Fisher matrix method that has been mainly used to predict the errors in the parameter estimates analytically. The Fisher matrix is very easy to compute and has very low computational cost compared to Monte Carlo simulations. Using the Fisher matrix, we calculate the parameter estimate errors for a nonspinning black hole — neutron star binary system. We find that the errors of the component masses for the advanced LIGO sensitivity can be smaller than those for the initial LIGO sensitivity by a factor of ~ 3.

Keywords

Gravitational wave Data analysis Parameter estimate Fisher matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908 (1982).ADSCrossRefGoogle Scholar
  2. [2]
    J. M. Weisberg and J. H. Taylor, arXiv:astro-ph/0407149 (2004).Google Scholar
  3. [3]
    J. Abadie et al., (LIGO Scientific Collaboration), arXiv:1411.4547 (2014).Google Scholar
  4. [4]
    F. Acernese et al., Class. Quantum Grav. 32, 024001 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).ADSCrossRefGoogle Scholar
  6. [6]
    J. Aasi et al., (LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).Google Scholar
  7. [7]
    M. Vallisneri, Phys. Rev. D 77, 042001 (2008).ADSCrossRefGoogle Scholar
  8. [8]
    I. Mandel, C. Berry, F. Ohme, S. Fairhurst and W. M. Farr, Class. Quantum Grav. 31, 155005 (2014).ADSCrossRefGoogle Scholar
  9. [9]
    H.-S. Cho and C.-H. Lee, Class. Quantum Grav. 31, 235009 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    LSC Algorithm Library software packages LAL, https://www.lsc-group.phys.uwm.edu/daswg/projects/lal/nightly/docs/html/.Google Scholar
  11. [11]
    A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan and B. S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44, 3819 (1991).ADSCrossRefGoogle Scholar
  13. [13]
    C. Cutler and E. É. Flanagan, Phys. Rev. D 49, 2658 (1994).ADSCrossRefGoogle Scholar
  14. [14]
    E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).ADSCrossRefGoogle Scholar
  15. [15]
    J. Abadie et al., (LIGO Collaboration, Virgo Collaboration), Phys. Rev. D 85, 082002 (2012).ADSGoogle Scholar
  16. [16]
    L. S. Finn, Phys. Rev. D 46, 5236 (1992).ADSCrossRefGoogle Scholar
  17. [17]
    C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018 (2007).ADSCrossRefGoogle Scholar
  18. [18]
    N. J. Cornish and E. K. Porter, Class. Quantum Grav. 23, S761 (2006).Google Scholar
  19. [19]
    M. van der Sluys, I. Mandel, V. Raymond, V. Kalogera, C. Röver and N. Christensen, Class. Quantum Grav. 26, 204010 (2009).ADSCrossRefGoogle Scholar
  20. [20]
    H.-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C.-H. Lee, Phys. Rev. D 87, 024004 (2013).ADSCrossRefGoogle Scholar
  21. [21]
    P. Jaranowski and A. Królak, Phys. Rev. D 49, 1723 (1994).ADSCrossRefGoogle Scholar
  22. [22]
    P. Ajith and S. Bose, Phys. Rev. D 79, 084032 (2009).ADSCrossRefGoogle Scholar
  23. [23]
    T. Damour, B. R. Iyer and B. S. Sathyaprakash, Phys. Rev. D 63, 044023 (2001).ADSCrossRefGoogle Scholar
  24. [24]
    C. P. L. Berry et al., arXiv:1411.6934 (2014).Google Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Korea Institute of Science and Technology InformationDaejeonKorea

Personalised recommendations