Journal of the Korean Physical Society

, Volume 66, Issue 10, pp 1586–1592 | Cite as

Effects of graphene oxide (GO) on GO-Cu2O composite films grown by using electrochemical deposition for a PEC photoelectrode

  • Tae Gyoum Kim
  • Hyukhyun RyuEmail author
  • Won-Jae Lee
  • Jang-Hee Yoon


In this study, GO-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates with various amounts of GO by using an electrochemical deposition. We investigated the effects of the GO content on the morphological, structural, optical, and photoelectrochemical (PEC) properties of the GO-Cu2O composite film and on its XPS spectrum. The highest XRD (111) peak intensity was obtained for the 10-wt% sample, which had an optical energy band gap of 2.15 eV. However, the highest photocurrent density was -4.74 mA/cm2 for the 1-wt% sample, which had an optical energy band gap of 1.94 eV. The photocurrent density for the 1-wt% sample was approximately 1.75 times greater than that for the 0-wt% sample. From the XPS measurements, we observed that the oxygen concentration for the sample with 1-wt% GO was higher than it was for the 0-wt% GO, which may have improved the photocurrent density of the sample with 1-wt% GO.


Photoelectrochemical (PEC) GO-Cu2O composite film X-ray photoelectron spectroscopy (XPS) Electrochemical deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Chiang, J. Epstein, A. Brown, J. N. Munday, J. N. Culver and S. Ehrman, Nano Lett. 12, 6005 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    K. Maeda, J. Photochem. Photobiol. C: Photochem. Rev. 12, 237 (2011).CrossRefGoogle Scholar
  3. [3]
    X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun and Y. Zhu, Langmuir. 29, 3097 (2013).CrossRefGoogle Scholar
  4. [4]
    E. Thimsen, F. Le Formal, M. Grätzel and S. C. Warren, Nano Lett. 11, 35 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Lett. 11, 4978 (2011).ADSCrossRefGoogle Scholar
  6. [6]
    J. Su, X. Feng, J. D. Sloppy, L. Guo and C. A. Grimes, Nano Lett. 11, 203 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    S. Liu, J. Tian, L. Wang, Y. Luo and X. Sun, Catal. Sci. Tech. 2, 339 (2012).CrossRefGoogle Scholar
  8. [8]
    M. A. Mahmoud, W. Qian and M. A. El-Sayed, Nano Lett. 11, 3285 (2011).CrossRefGoogle Scholar
  9. [9]
    L. Wu, L. Tsui, N. Swami and G. Zangari, J. Phys. Chem. C 114, 11551 (2010).CrossRefGoogle Scholar
  10. [10]
    Y. Liu, Y. Liu, R. Mu, H. Yang, C. Shao, J. Zhang, Y. Lu, D. Shen and X. Fan, Semicond. Sci. Tech. 20, 44 (2005).ADSCrossRefGoogle Scholar
  11. [11]
    P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, Chem. Commun. 1069 (1999).Google Scholar
  12. [12]
    T. Maruyama, Solar Energy Mater. Solar Cells 56, 85 (1998).CrossRefGoogle Scholar
  13. [13]
    J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, J. Appl. Electrochem. 34, 687 (2004).CrossRefGoogle Scholar
  14. [14]
    Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou and W. Cai, Nano-Micro Lett. 2, 277 (2010).CrossRefGoogle Scholar
  15. [15]
    S. Ishizuka et al., physica status solidi (c) 1, 1067 (2004).ADSCrossRefGoogle Scholar
  16. [16]
    C. Chiang, Y. Shin and S. Ehrman, J. Electrochem. Soc. 159, B227 (2011).Google Scholar
  17. [17]
    S. Ishizuka et al., physica status solidi (c) 1, 1067 (2004).ADSCrossRefGoogle Scholar
  18. [18]
    A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley and M. Grätzel, Energy Environ. Sci. 5, 8673 (2012).CrossRefGoogle Scholar
  19. [19]
    A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, N. K. Singh, J. Song and J. Kim, J. Power Sources 244, 435 (2013).CrossRefGoogle Scholar
  20. [20]
    O. O. Kapitanova, G. N. Panin, A. N. Baranov and T. W. Kang, J. Korean Phys. Soc. 60, 1789 (2012).ADSCrossRefGoogle Scholar
  21. [21]
    D. H. Shin, S. B. Yang, D. Y. Shin, C. O. Kim, S. Kim, S-H. Choi and S-H. Paek, J. Korean Phys. Soc. 61, 563 (2012).ADSCrossRefGoogle Scholar
  22. [22]
    Y. Qian, F. Ye, J. Xu and Z. Le, Intern. J. Electrochem. Sci. 7, 10063 (2012).Google Scholar
  23. [23]
    S. Wu, Z. Yin, Q. He, X. Huang, X. Zhou and H. Zhang, J. Phys. Chem. C 114, 11816 (2010).CrossRefGoogle Scholar
  24. [24]
    T. Sreeprasad, S. M. Maliyekkal, K. Lisha, and T. Pradeep, J. Hazard. Mater. 186, 921 (2011).CrossRefGoogle Scholar
  25. [25]
    C. Xu, X. Wang, L. Yang and Y. Wu, J. Solid State Chem. 182, 2486 (2009).ADSCrossRefGoogle Scholar
  26. [26]
    Y. Mai, X. Wang, J. Xiang, Y. Qiao, D. Zhang, C. Gu and J. Tu, Electrochim. Acta 56, 2306 (2011).CrossRefGoogle Scholar
  27. [27]
    J. G. Radich, R. Dwyer and P. V. Kamat, J. Phys. Chem. Lett. 2, 2453 (2011).CrossRefGoogle Scholar
  28. [28]
    X. Zhu, Y. Zhu, S. Murali, M. D. Stoller and R. S. Ruoff, ACS Nano 5, 3333 (2011).CrossRefGoogle Scholar
  29. [29]
    J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Adv. Funct. Mater. 20, 4175 (2010).CrossRefGoogle Scholar
  30. [30]
    T. Mahalingam, J. Chitra, J. Chu, S. Velumani and P. Sebastian, Solar Energy Mater. Solar Cells 88, 209 (2005).CrossRefGoogle Scholar
  31. [31]
    J. Nian, C. Hu and H. Teng, Int. J. Hydrogen Energy 33, 2897 (2008).CrossRefGoogle Scholar
  32. [32]
    Q. Han et al., J. Nanosci. Nanotech. 12, 3677 (2012).CrossRefGoogle Scholar
  33. [33]
    P. De Jongh, D. Vanmaekelbergh and J. Kelly, Chem. Mater. 11, 3512 (1999).CrossRefGoogle Scholar
  34. [34]
    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nature Mater. 10, 456 (2011).ADSCrossRefGoogle Scholar
  35. [35]
    X. An, K. Li and J. Tang, Chem. Sus. Chem. 7, 1086 (2014).CrossRefGoogle Scholar
  36. [36]
    T.G. Kim, H. Oh, H. Ryu and W. Lee, J. Alloy Compd. 612, 74 (2014).CrossRefGoogle Scholar
  37. [37]
    B. Singh, B. Mehta, X. Feng and K. Müllen, Appl. Phys. Lett. 99, 222109 (2011).ADSCrossRefGoogle Scholar
  38. [38]
    B. Heng, T. Xiao, W. Tao, X. Hu, X. Chen, B. Wang, D. Sun and Y. Tang, Crystal Growth & Design 12, 3998 (2012).CrossRefGoogle Scholar
  39. [39]
    J. Jang, H. Ryu, W. Lee and J. Yun, J. Alloy Compd. 577, 395 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • Tae Gyoum Kim
    • 1
  • Hyukhyun Ryu
    • 1
    Email author
  • Won-Jae Lee
    • 2
  • Jang-Hee Yoon
    • 3
  1. 1.Department of Nano Science and Engineering, High Safety Vehicle Core Technology Research CenterInje UniversityGimhaeKorea
  2. 2.Department of Materials and Components EngineeringDong-Eui UniversityBusanKorea
  3. 3.High Technology Components & Materials Research CenterKorea Basic Science InstituteBusanKorea

Personalised recommendations