Journal of the Korean Physical Society

, Volume 66, Issue 9, pp 1334–1338 | Cite as

Reconsideration of the morphotropic phase boundary - the order of the ferroelectric phase transition -

Article
  • 95 Downloads

Abstract

The morphtropic phase boundary existing in a perovskite-type solid solution like Pb(Zr,Ti)O3 (PZT) is reconsidered in relation to the order of the ferroelectric phase transition. For the secondorder transition from the paraelectric cubic phase, at the triple point S where the cubic, tetragonal and rhombohedral phases meet, the free energy is isotropic in the order parameter space, and a vertical boundary guarantees dielectrically excellent properties, while for the first-order transition, at the triple point F, the free energy is usually anisotropic, and even a vertical boundary does not necessarily guarantee the best properties.

Keywords

Morphotropic phase boundary Ferroelectrics Solid solution Second-order transition First-order transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Jaffe, W. R. Crook, Jr. and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971).Google Scholar
  2. [2]
    E. Sawaguchi, J. Phys. Soc. Jpn. 8, 615 (1953).CrossRefADSGoogle Scholar
  3. [3]
    Y. Ishibashi and M. Iwata, Jpn. J. Appl. Phys. 37, L985 (1998).Google Scholar
  4. [4]
    Y. Ishibashi and M. Iwata, Jpn. J. Appl. Phys. 38, 800 (1999).CrossRefADSGoogle Scholar
  5. [5]
    Y. Ishibashi and M. Iwata, Jpn. J. Appl. Phys. 38, 1454 (1999).CrossRefADSGoogle Scholar
  6. [6]
    B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross and S-E. Park, Appl. Phys. Lett. 74, 2059 (1999).CrossRefADSGoogle Scholar
  7. [7]
    Y. Ishibashi and M. Iwata, J. Phys. Soc. Jpn. 68, 1353 (1999).CrossRefADSGoogle Scholar
  8. [8]
    Y. Ishibashi and M. Iwata, J. Phys. Soc. Jpn. 72, 1675 (2003).CrossRefADSGoogle Scholar
  9. [9]
    M. Iwata and Y. Ishibashi, J. Phys. Soc. Jpn. 72, 2843 (2003).CrossRefADSMATHGoogle Scholar
  10. [10]
    Y. Ishibashi and M. Iwata, Jpn. J. Appl. Phys. 44, 6624 (2005).CrossRefADSGoogle Scholar
  11. [11]
    M. Iwata and Y. Ishibashi, Jpn. J. Appl. Phys. 44, 6667 (2005).CrossRefADSGoogle Scholar
  12. [12]
    D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).Google Scholar
  13. [13]
    M. Iwata and Y. Ishibashi, Jpn. J. Appl. Phys. 44, 3095 (2005).CrossRefADSGoogle Scholar
  14. [14]
    K. Fujita and Y. Ishibashi, Jpn. J. Appl. Phys. 36, 254 (1997).CrossRefADSGoogle Scholar
  15. [15]
    V. Janovec, V. Dvorak and J. Petzelt, Czech J. Phys. B 25, 1362 (1975).CrossRefADSGoogle Scholar
  16. [16]
    J. Kuwata, K. Uchino and S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982).CrossRefADSGoogle Scholar
  17. [17]
    J. Zhao, Q. M. Zhang, N. Kim and T. Shrout, Jpn. J. Appl. Phys. 34, 5958 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  1. 1.Department of Applied PhysicsNagoya UniversityNagoyaJapan
  2. 2.Department of Engineering Physics, Electronics and MechanicsGraduate School of Engineering, Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations