Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lag projective synchronization of two chaotic systems with different fractional orders

  • 91 Accesses

  • 7 Citations

Abstract

Lag projective synchronization (LPS) of chaotic systems with different fractional orders is investigated. A scheme of LPS is designed based on the stability of fractional nonlinear systems. LPS between two four-scroll hyperchaotic systems with different fractional orders is realized by using the scheme and is simulated by using a multi-step fractional differential transform method. All the theoretical analysis and simulation results show the effectiveness of the proposed controller. The work in this paper may accelerate the application of fractional-order chaotic systems in practice.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    M. F. Llop, N. Jand, K. Gallucci and F. X. Llauro, Chem. Eng. Sci. 71, 252 (2012).

  2. [2]

    Z. L. Qu, Prog. Biophys. Mol. Biol. 105, 247 (2011).

  3. [3]

    K. Webel, Econ. Lett. 115, 487 (2012).

  4. [4]

    Q. Jia, Phys. Lett. A 371, 410 (2007).

  5. [5]

    G. M. Mahmoud, E. E. Mahmoud and M. E. Ahmed, Nonlinear Dyn. 58, 725 (2009).

  6. [6]

    Y. J. Niu, X. Y. Wang, M. J. Wang and H. G. Zhang, Commun. Nonlinear Sci. Numer. Simulat. 15, 3518 (2010).

  7. [7]

    S. Dadras and H. R. Momeni, Phys. Lett. A 373, 3637 (2009).

  8. [8]

    L. Wang, Nonlinear Dyn. 56, 453 (2009).

  9. [9]

    G. Qi, G. Chen and Y. Zhang, Phys. Lett. A 352, 386 (2006).

  10. [10]

    S. Dadras and H. R. Momeni, Phys. Lett. A 374, 1368 (2010).

  11. [11]

    S. Cang, G. Qi and Z. Chen, Nonlinear Dyn. 59, 515 (2010).

  12. [12]

    Y. X. Li, Y. C. Cao, X. Huang and M. Gao, 2010 International Conference on Communications, Circuits and Systems (UESTC Press, Chengdu, 2010), p. 742.

  13. [13]

    C. L. Li, Z. L. Tang and S. M. Yu, Fourth International Workshop on Chaos-Fractals Theories and Applications (IEEE Computer Society, Los Alamitos, 2011), p. 18.

  14. [14]

    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999).

  15. [15]

    S, Das, Functional Fractional Calculus for System Identification and Controls (Springer, New York, 2008).

  16. [16]

    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2001).

  17. [17]

    X. J. Wu, H. Wang and H. T. Lu, Nonlinear Anal. Real. 13, 1441 (2012).

  18. [18]

    J. W. Wang and Y. B. Zhang, Phys. Lett. A 374, 202 (2009).

  19. [19]

    H. Taghvafard and G. H. Erjaee, Commun. Nonlinear Sci. Numer. Simulat. 16, 4079 (2011).

  20. [20]

    X. Wu, H. Lu and S. Shen, Phys. Lett. A 373, 2329 (2009).

  21. [21]

    X. Y. Wang and Y. J. He, Phys. Lett. A 372, 435(2008).

  22. [22]

    J. Bai, Y. G. Yu, S. Wang and Y. Song, Commun. Nonlinear Sci. Numer. Simulat. 17, 1921 (2012).

  23. [23]

    Q. J. Zhang and J. A. Lu, Phys. Lett. A 372, 1416 (2008).

  24. [24]

    L. P. Chen, Y. Chai and R. C. Wu, Phys. Lett. A 375, 2099 (2011).

  25. [25]

    A. K. Alomari, Comput. Math. Appl. 61, 2528 (2011).

  26. [26]

    S. S. Ray and R. K. Bera, Appl. Math. Comput. 167, 561 (2005).

  27. [27]

    K. Diethelm, N. J. Ford and A. D. Freed, Nonlinear Dyn. 29, 3 (2002).

  28. [28]

    W. H. Deng and C. P. Li, Phys. A 353, 61 (2005).

  29. [29]

    J. K. Zhou, Differential Transformation and Its Applications for Electrical Circuits (Huazhong University Press, Wuhan, 1986).

  30. [30]

    A. Arikoglu and I. Ozkol, Chaos Solitons Fract. 34, 1473 (2007).

  31. [31]

    Z. Odibat, S. Momani and V. S. Erturk, Appl. Math. Comput. 197, 467 (2008).

  32. [32]

    M. M. Al-sawalha and M. S. M. Noorani, Chaos Solitons Fract. 42, 1784 (2009).

  33. [33]

    Z. M. Odibat, C. Bertelle, M. A. Aziz-Alaoui and G. H. E. Duchamp, Comput. Math. Appl. 59, 1462 (2010).

  34. [34]

    M. Merdan, Appl. Math. Model. 37, 6025 (2013).

  35. [35]

    R. Caponetto and S. Fazzino, Commun. Nonlinear Sci. Numer. Simulat. 18, 22 (2013).

  36. [36]

    A. K. Alomari, Comput. Math. Appl. 61, 2528 (2011).

  37. [37]

    E. Ahmed, A. M. A. El-Sayed and H. A. A. El-Saka, J. Math. Anal. Appl. 325, 542 (2007).

  38. [38]

    D. Cafagna and G. Grassi, Int. J. Bifur. Chaos 13, 2889 (2003).

Download references

Author information

Correspondence to Zhenwu Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Z. Lag projective synchronization of two chaotic systems with different fractional orders. Journal of the Korean Physical Society 66, 1192–1199 (2015). https://doi.org/10.3938/jkps.66.1192

Download citation

Keywords

  • Fractional-order chaotic system
  • Lag projective synchronization
  • Fractional differential transform method