Journal of the Korean Physical Society

, Volume 65, Issue 11, pp 1985–1990 | Cite as

Structural properties of networks grown via an Achlioptas process

  • Woo Seong Jo
  • Beom Jun Kim
  • Su Do Yi
  • Seung-Woo Son


After the Achlioptas process (AP), which yields the so-called explosive percolation, was introduced, the number of papers on percolation phenomena has been literally exploding. Most of the existing studies, however, have focused only on the nature of phase transitions, not paying proper attention to the structural properties of the resulting networks, which compose the main theme of the present paper. We compare the resulting network structure of the AP with random networks and find, through observations of the distributions of the shortest-path length and the betweenness centrality in the giant cluster, that the AP makes the network less clustered and more fragile. Such structural characteristics are more directly seen by using snapshots of the network structures and are explained by the fact that the AP suppresses the formation of large clusters more strongly than the random process does. These structural differences between the two processes are shown to be less noticeable in growing networks than in static ones.


Achlioptas process Complex networks Structural properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    A.-L. Barabási and R. Albert, Science 286, 509 (1999).ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079 (2002).ADSCrossRefGoogle Scholar
  5. [5]
    M. E. J. Newman, SIAM Rev. 45, 167 (2003).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    P. Erdös and A. Rényi, Publicationes Mathematicae 6, 290 (1959).zbMATHGoogle Scholar
  7. [7]
    In the same sense, N nodes are randomly wired with L links.Google Scholar
  8. [8]
    M. E. J. Newman, Networks: An Introduction (Oxford University Press, New York, 2011).Google Scholar
  9. [9]
    B. Bollobas, Random Graphs (Academic Press, New York, 1985).zbMATHGoogle Scholar
  10. [10]
    S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Rev. Mod. Phys. 80, 1275 (2008).ADSCrossRefGoogle Scholar
  11. [11]
    D. Achlioptas, R. M. D’Souza and J. Spencer, Science 323, 1453 (2009).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Y. S. Cho, J. S. Kim, J. Park, B. Kahng and D. Kim, Phys. Rev. Lett. 103, 135702 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Phys. Rev. Lett. 105, 255701 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    P. Grassberger, C. Christensen, G. Bizhani, S.-W. Son and M. Paczuski, Phys. Rev. Lett. 106, 225701 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    H. K. Lee, B. J. Kim and H. Park, Phys. Rev. E 84, 020101(R) (2011).ADSGoogle Scholar
  16. [16]
    O. Riordan and L. Warnke, Science 333, 322 (2011).ADSCrossRefGoogle Scholar
  17. [17]
    Y. S. Cho and B. Kahng, Phys. Rev. Lett. 107, 275703 (2011).ADSCrossRefGoogle Scholar
  18. [18]
    S. D. Yi, W. S. Jo, B. J. Kim and S.-W. Son, EPL 103, 26004 (2013).ADSCrossRefGoogle Scholar
  19. [19]
    Y. S. Cho, S. Hwang, H. J. Herrmann and B. Kahng, Science 339, 1185 (2013).ADSCrossRefGoogle Scholar
  20. [20]
    There are several versions of the AP with small differences in the details of the link selection methods [13,15, 17].Google Scholar
  21. [21]
    D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Phys. Rev. E 64, 041902 (2001).ADSCrossRefGoogle Scholar
  22. [22]
    P. L. Krapivsky, S. Redner and F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000).ADSCrossRefGoogle Scholar
  23. [23]
    L. Zalányi, G. Csárdi, T. Kiss, M. Lengyel, R. Warner, J. Tobochnik and P. Érdi, Phys. Rev. E 68, 066104 (2003).ADSCrossRefGoogle Scholar
  24. [24]
    S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Phys. Rev. E 64, 066110 (2001).ADSCrossRefGoogle Scholar
  25. [25]
    In order to study the network structure of the macroscopic-size of the giant component that exists above the percolation threshold δ c, we use the link density δ = L/N = 1 (correpsonding to the average degree 〈k〉 = 2), which is larger than δ c for all four processes considered in this work.Google Scholar
  26. [26]
    M. Á. Serrano and M. Boguñá, Phys. Rev. E 74, 056114 (2006).ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    C.-Y. Lee and S. Jung, Phys. Rev. E 73, 066102 (2006).ADSCrossRefGoogle Scholar
  28. [28]
    L. C. Freeman, Sociometry 40, 35 (1977).CrossRefGoogle Scholar
  29. [29]
    S.-W. Son, B. J. Kim, H. Hong and H. Jeong, Phys. Rev. Lett. 103, 228702 (2009).ADSCrossRefGoogle Scholar
  30. [30]
    U. Brandes, J. Math. Sociol. 25, 163 (2001).CrossRefzbMATHGoogle Scholar
  31. [31]
    S.-W. Son, D.-H. Kim, Y.-Y. Ahn and H. Jeong, J. Korean Phys. Soc. 44, 628 (2004).ADSCrossRefGoogle Scholar
  32. [32]
    R. Albert, H. Jeong and A.-L. Barabási, Nature 406, 378 (2000).ADSCrossRefGoogle Scholar
  33. [33]
    P. Holme, B. J. Kim, C. N. Yoon and S. K. Han, Phys. Rev. E 65, 056109 (2002).ADSCrossRefGoogle Scholar
  34. [34]
    R. Cohen, K. Erez, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).ADSCrossRefGoogle Scholar
  35. [35]
    D. S. Callaway, M. E. J. Newman, S. H. Strogatz and D. J. Watts, Phys. Rev. Lett. 85, 5468 (2000).ADSCrossRefGoogle Scholar
  36. [36]
    M. E. J. Newman and G. Ghoshal, Phys. Rev. Lett. 100, 138701 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of PhysicsSungkyunkwan UniversitySuwonKorea
  2. 2.Department of PhysicsPukyong National UniversityBusanKorea
  3. 3.Department of Applied PhysicsHanyang UniversityAnsanKorea

Personalised recommendations