Journal of the Korean Physical Society

, Volume 65, Issue 10, pp 1499–1502 | Cite as

Solid-state synthesis and thermoelectric properties of Cr-doped MnSi1.73

  • Dong-Kil Shin
  • Sin-Wook You
  • Il-Ho Kim


Cr-doped HMSs (higher manganese silicides), MnSi1.73 : Cr x (x = 0, 0.005, 0.01, 0.02, 0.03), were prepared by using a solid-state reaction and hot pressing. X-ray diffraction analysis and Rietveld refinement confirmed the synthesis of MnSi1.73. The Cr atoms were confirmed to be soluble in the HMS structure because the lattice constant increased with increasing Cr content (x), and the solid solubility limit of Cr was estimated as x = 0.01. All specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at all temperatures examined (323–823 K). The Seebeck coefficient was decreased and the electrical conductivity was increased by Cr doping. The dimensionless thermoelectric figure of merit ZT was obtained as 0.36 at 823 K for MnSi1.73 : Cr0.005 and MnSi1.73 : Cr0.01 because the power factor was increased and the thermal conductivity was decreased by Cr doping.


Thermoelectric Higher manganese silicide Solid-state reaction Hot pressing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Jiang, L. D. Chen, Q. Yao and Q. Wang, Mater. Trans. 46, 959 (2005).CrossRefGoogle Scholar
  2. [2]
    P. W. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. P. Jia and G. Z. Ren, Mater. Trans. 45, 3102 (2004).CrossRefGoogle Scholar
  3. [3]
    J. S. Lin and Y. Miyamoto, Mater. Res. 15, 647 (2000).ADSCrossRefGoogle Scholar
  4. [4]
    Q. Zhang, J. He, X. B. Zhao, S. N. Zhang, T. J. Zhu, H. Yin and T. M. Tritt, J. Phys. D 41, 185103 (2008).ADSCrossRefGoogle Scholar
  5. [5]
    J. Y. Jung and I. H. Kim, Electron. Mater. Lett. 6, 187 (2010).ADSCrossRefGoogle Scholar
  6. [6]
    K. H. Park and I. H. Kim, Electron. Mater. Lett. 7, 39 (2011).ADSCrossRefGoogle Scholar
  7. [7]
    N. Prasoetsopha, S. Pinitsoontorn and V. Amornkitbamrung, Electron. Mater. Lett. 8, 305 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    M. I. Fedorov, V. K. Zaitsev, F. Solomkin and M. Vedernikov, Tech. Phys. Lett. 23, 602 (1997).ADSCrossRefGoogle Scholar
  9. [9]
    M. I. Fedorov and V. K. Zaitsev, Thermoelectrics Handbook, edited by D. M. Rowe (CRC, Boca Raton, 2006), p. 31.Google Scholar
  10. [10]
    S. W Kim, M. K. Cho, Y. Mishima and D. C. Choi, Intermetallics 2005, 309 (2003).Google Scholar
  11. [11]
    O. Shwomma, A. Preisinger, H. Nowotny and A. Wittman, Monatsh. Chem. 95, 1527 (1964).CrossRefGoogle Scholar
  12. [12]
    H. W. Knott, M. H. Mueller and L. Heaton, Acta Crystallogr. 23, 549 (1967).CrossRefGoogle Scholar
  13. [13]
    G. Zwilling and H. Nowotny, Monatsh. Chem. 102, 672 (1971).CrossRefGoogle Scholar
  14. [14]
    O. G. Karpinskii and B. A. Evseev, Neorg. Mater. 5, 525 (1969).Google Scholar
  15. [15]
    H. Nowotny, L. Eyring and M. O’Keefe, The Chemistry of Extended Defects in Non-metallic Solids (Elsevier, Amsterdam, 1970), p. 223.Google Scholar
  16. [16]
    G. Liu, Q. Lu, X. Zhang, J. Zhang and Y. Shi, J. Electron. Mater. 41, 1450 (2011).ADSCrossRefGoogle Scholar
  17. [17]
    D. K. Shin, S. C. Ur, K. W. Jang and I. H. Kim, J. Electron. Mater. (submitted).Google Scholar
  18. [18]
    A. Wittmann, K. O. Burger and H. Nowotny, Monatsh. Chem. 93, 674 (1962).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations