Journal of the Korean Physical Society

, Volume 64, Issue 7, pp 954–957 | Cite as

Winding-number excitation in one-dimensional oscillators with variable interaction range

Article

Abstract

At how long of an interaction range does an oscillator system behave as a fully-connected one? To answer this question, we consider a system of nonlocally-coupled phase oscillators in one dimension, and explore the effects of a variable interaction range L on collective dynamics. In particular, we investigate the winding-number distribution, paying particular attention to the existence of a twisted wave in the system, and observe that the twisted state vanishes when the interaction range exceeds a critical value. Finite-size scaling of the width of the winding-number distribution reveals that the transition occurs at 2L/N ≈ 0.6, regardless of the system size N. We also show that at the same transition point for the topological twisted state, the phase synchrony in the system becomes partial.

Keywords

Winding number Coupled oscillators Twisted state Interaction range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. T. Winfree, The Geometry of Biological Time (Springer, New York, 1980); Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984); J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77, 137 (2005); see also the references therein.CrossRefMATHGoogle Scholar
  2. [2]
    H. Daido, Prog. Theor. Phys. 77, 622 (1987); Phys. Rev. Lett. 68, 1073 (1992); L. L. Bonilla, C. J. P. Vicente, and J. M. Rubi, J. Stat. Phys. 70, 921 (1993); D. H. Zanette, Europhys. Lett. 72, 190 (2005).ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Hong and S. H. Strogatz, Phys. Rev. Lett. 106, 054102 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen, Phys. Rev. E 79, 026204 (2009).ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. A. Wiley, S. H. Strogatz, and M. Girvan, Chaos 16, 015103 (2006).ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. S. Tsimring, N. F. Rulkov, M. L. Larsen, and M. Gabbay, Phys. Rev. Lett. 95, 014101 (2005); T. Girnyk, M. Hasler, and Y. Maistrenko, Chaos 22, 013114 (2012).ADSCrossRefGoogle Scholar
  7. [7]
    J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974); J. M. Kosterlitz and D. J. Thouless, ibid. 6, 1181 (1974).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Physics and Research Institute of Physics and ChemistryChonbuk National UniversityJeonjuKorea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonKorea

Personalised recommendations