Advertisement

Journal of the Korean Physical Society

, Volume 64, Issue 5, pp 701–705 | Cite as

Low-temperature processing of inkjet-printed IZO thin-film transistors

  • Jun Seok Lee
  • Woon-Seop ChoiEmail author
Article

Abstract

Inkjet-printed indium-zinc oxide (IZO) thin-film transistors (TFTs) were prepared at a processing temperature of 200 °C for the first time. The formulation of the inkjet solution and the process optimization resulted in a mobility of 0.45 cm2/Vs, a threshold voltage of 7 V, an on-to-off current ratio of 105 and a subthreshold slope of 0.5 V/dec at the low annealing temperature of 200 °C, the best properties in the inkjet process thus far. The metal-oxide formation at 200 °C was confirmed by using X-ray photoelectron Spectroscopy. The bias stability of an inkjet-printed IZO TFT at 200 °C was also characterized.

Keywords

Inkjet Low-temperature process Indium-zinc-oxide (IZO) Thin-film transistor (TFT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Q. Chiang, J. F. Wager and R. L. Hoffman, Appl. Phys. Lett. 86, 013 503 (2004).CrossRefGoogle Scholar
  2. [2]
    B. S. Ong, C. Li, Y. Li, Y. Wu and R. Loutfy, J. Amer. Chem. Soc. 129, 2750 (2007).CrossRefGoogle Scholar
  3. [3]
    C. G. Choi, S. J. Seo and B. S. Bae, Electrochem. Solid-State Lett. 11, H7 (2008).CrossRefGoogle Scholar
  4. [4]
    J. S. Lee, Y. J. Kwack and W. S. Choi, J. Kor. Phys. Soc. 59, 3055 (2011).CrossRefGoogle Scholar
  5. [5]
    H. S. Kim, P. D. Byrne, A. Facchetti and T. J. Marks, J. Amer. Chem. Soc. 130, 12580 (2008).CrossRefGoogle Scholar
  6. [6]
    Z. L. Lu, H. S. Hsu, Y. H. Tzeng, F. M. Zhang, Y. W. Du and J. C. A. Huang, Appl. Phys. Lett. 95, 102501 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    D. H. Lee, Y. J. Chang, G. S. Herman and C. H. Chang, Adv. Mater. 19, 843 (2007).CrossRefGoogle Scholar
  8. [8]
    Y. Wu, E. Girgis, V. Strom, W. Voit, L. Belova and K. V. Rao, Phys. Stat. Sol. (A) 208, 206 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    C. Y. Koo, K. Song, T. Jun, D. Kim, Y. Jeong, S. H. Kim, J. Ha and J. Moon, J. Electrochem. Soc. 157, J111 (2010).CrossRefGoogle Scholar
  10. [10]
    W. H. Jeong, J Bae and H. J. Kim, IEEE Electron Dev. Lett. 33, 68 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    M. G. Kim, M. Kanatzidis, A. Facchetti and T. J. Marks, Nature Materials 10, 381 (2011).ADSGoogle Scholar
  12. [12]
    Y. H. Kim, T. Heo, T. Kim, S. Park, M. Yoon, J. Kim, M. Oh, G. Yi, Y. Noh and S. K. Park, Nature 489, 128 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    Y. Wang, X. W. Sun, G. K. L. Goh, H. Demir and H. Yu., IEEE Trans. Electron Devices 58, 480 (2011).CrossRefGoogle Scholar
  14. [14]
    M. Matters, D. Leeuw, P. Herwig and A Brown, Synth. Met. 102, 998 (1999).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Display EngineeringHoseo UniversityAsanKorea

Personalised recommendations